
Concentration for Coulomb gases on compact manifolds

I see this article as an excuse to present the inequality below. For any compact Riemannian
manifold M of dimension d ≥ 2, Green function G, heat kernel pt and volume (probability)
measure σ, there exists C > 0 such that, for every (x1, . . . , xn) ∈Mn and every t > 0 :
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This, complemented with the fact that, for the Wasserstein distance W1,
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is used to obtain a concentration inequality for Coulomb gases (taking t = 1
n2/d to optimize).

Remark 1. In fact, the proof of the inequality W1 ≤ C
√
t shows first that W2 ≤ C

√
t, and the

concentration inequality can be obtained for the W2 distance (we should be careful if we want to
add a potential).

Remark 2. Using the heat kernel is not necessary. Indeed, a similar result holds in the Euclidean

case for pt(x, ·)dσ replaced by
√
t
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ty)dy and ρ of finite energy. Nevertheless, in this case,

the heat kernel seems like the natural choice since G and p are both obtained from the Laplacian
which gives a nice interaction between those objects.

Idea of the proof

Let 0 = λ0 ≤ λ1 ≤ . . . be the eigenvalues of minus the Laplacian with orthonormal eigenvectors
(en)n≥0. The main (standard) idea is to notice that, as operators,
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Then, as operators, we have
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which, together with the fact that pt(x, y) ≥ 0 and the asymptotic expansion
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gives the inequality stated in the box above.


