An LDP for empirical measures on Polish spaces

The main goal of this article is to provide simple conditions for $W_n: M^n \to (-\infty, \infty]$ so that the measures γ_n given by

$$d\gamma_n = \exp(-n\beta_n W_n) d\sigma^{\otimes_n}$$

satisfy a Laplace principle, i.e.,

$$\frac{1}{n\beta_n}\log\gamma_n(M^n) \text{ converges to } -\inf\{\text{something}\}\$$

and, more generally,

$$\frac{1}{n\beta_n}\log\int_{M^n}e^{-n\beta_nf\left(\frac{1}{n}\sum_{i=1}^n\delta_{x_i}\right)}\mathrm{d}\gamma_n(x_1,\ldots,x_n)\text{ converges to }-\inf\{f+\text{something}\}$$

for every bounded continuous function $f: \mathcal{P}(M) \to \mathbb{R}$. The conditions for $(W_n)_n$ would be part of the "something" in the limit. The simplest version is the following. Suppose that

- $W(\mu) = \lim_{n \to \infty} \int_{M^n} W_n d\mu^{\otimes_n}$ exists for every probability measure $\mu \in \mathcal{P}(M)$ and that,
- whenever $\frac{1}{n}\sum_{i=1}^n \delta_{x_i}$ converges to μ , the inequality $\lim\inf W_n(x_1,\ldots,x_n)\geq W(\mu)$ holds.

Suppose, in addition, that W_n is uniformly bounded from below and that β_n converges to some $\beta \in (0, \infty)$. Then, the following holds for every bounded continuous function $f : \mathcal{P}(M) \to \mathbb{R}$.

$$\lim_{n\to\infty} \frac{1}{n\beta_n} \log \int_{M^n} e^{-n\beta_n f \circ i_n} d\gamma_n = -\inf_{\mu \ll \sigma} \left\{ f(\mu) + W(\mu) + \frac{1}{\beta} \int_M (\mu \log \mu) d\sigma \right\}.$$

Here, $i_n: M^n \to \mathcal{P}(M)$ is given by $i_n(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and the symbol μ in $\mu \log \mu$ actually denotes the density of μ with respect to σ .

There is a version where $\beta = \infty$. In this case, the entropy term $\frac{1}{\beta} \int_M (\mu \log \mu) d\sigma$ disappears so that we need two more conditions. One of this conditions is to make the entropy term actually disappear and it says that,

• for every $\mu \in \mathcal{P}(M)$, there exists a sequence $(\mu_n)_n$ such that $\int_M (\mu_n \log \mu_n) d\sigma < \infty$ and $\lim_{n \to \infty} W(\mu_n) = W(\mu)$.

The second is a compactness condition that appears because the entropy does not help anymore. It says that,

• if $W_n(x_1, \ldots, x_n)$ is uniformly bounded from above (where n is just an increasing sequence), then $\frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ has a convergent subsequence.

Remark. I see the measure γ_n as natural from the canonical ensemble viewpoint. This is why I take a sequence $(W_n)_n$ of energies instead of focusing on some particular case. On the other hand, I believe it is nice that those conditions are simple enough to make the proof almost straightforward. The main arguments are already found in the book A Weak Convergence Approach to the Theory of Large Deviations by Paul Dupuis and Richard Steven Ellis.

Idea of the proof

The main idea, part of the philosophy of the book of Dupuis and Ellis, is to notice that

$$\frac{1}{n\beta_n} \log \int_{M^n} e^{-n\beta_n f \circ i_n} d\gamma_n = \frac{1}{n\beta_n} \log \int_{M^n} e^{-n\beta_n (f \circ i_n + W_n)} d\sigma^{\otimes_n}
= -\inf_{\tau \ll \sigma^{\otimes_n}} \left\{ \int_{M^n} (f \circ i_n + W_n) d\tau + \frac{1}{\beta_n} \left(\frac{1}{n} \int_{M^n} (\tau \log \tau) d\sigma^{\otimes_n} \right) \right\}.$$

Then, we need to show that the infima converge. For instance, if we take $\tau = \mu^{\otimes_n}$, we have

$$\int_{M^n} (f \circ i_n + W_n) d\tau + \frac{1}{\beta_n} \left(\frac{1}{n} \int_{M^n} (\tau \log \tau) d\sigma^{\otimes_n} \right) \longrightarrow f(\mu) + W(\mu) + \frac{1}{\beta} \int_{M} (\mu \log \mu) d\sigma,$$

where we have used the (weak) law of large numbers for the $f \circ i_n$ part while the definition of W is used for the W_n part.