Aspects géométriques et probabilistes des gaz de Coulomb

David García Zelada

28 Juin 2019

Geometric and probabilistic aspects of Coulomb gases

David García-Zelada

June 28, 2019

Outline

A general model and a Laplace principle

Coulomb gas and concentration of measure

Background ensembles and limiting point processes

Selected perspectives

3/3

A general model and a Laplace principle

Outline

A general model and a Laplace principle

Coulomb gas and concentration of measure

Background ensembles and limiting point processes

Selected perspectives

A general model and a Laplace principle

Gibbs measure of n particles

System of n (random) particles in the Polish space M.

System of n (random) particles in the Polish space M.

Definition (Gibbs measure of n particles)

$$\mathrm{d}\mathbb{P}_n = \frac{1}{\mathcal{Z}_n} \exp(-n\beta_n H_n) \mathrm{d}\sigma^{\otimes_n}.$$

5/39

System of n (random) particles in the Polish space M.

Definition (Gibbs measure of n particles)

$$\mathrm{d}\mathbb{P}_n = \frac{1}{\mathcal{Z}_n} \exp(-n\beta_n H_n) \mathrm{d}\sigma^{\otimes_n}.$$

• Symmetric $H_n: M^n \to (-\infty, \infty]$, n-particle energy

5/39

System of n (random) particles in the Polish space M.

Definition (Gibbs measure of n particles)

$$\mathrm{d}\mathbb{P}_n = \frac{1}{\mathcal{Z}_n} \exp(-n\beta_n H_n) \mathrm{d}\sigma^{\otimes_n}.$$

- Symmetric $H_n: M^n \to (-\infty, \infty]$, n-particle energy,
- \bullet $\sigma \in \mathcal{P}(M)$, probability measure on M

System of n (random) particles in the Polish space M.

Definition (Gibbs measure of n particles)

$$\mathrm{d}\mathbb{P}_n = \frac{1}{\mathcal{Z}_n} \exp(-n\beta_n H_n) \mathrm{d}\sigma^{\otimes_n}.$$

- Symmetric $H_n: M^n \to (-\infty, \infty]$, n-particle energy,
- $\sigma \in \mathcal{P}(M)$, probability measure on M,
- $\beta_n \in [0, \infty)$, inverse temperature

System of n (random) particles in the Polish space M.

Definition (Gibbs measure of n particles)

$$\mathrm{d}\mathbb{P}_n = \frac{1}{\mathcal{Z}_n} \exp(-n\beta_n H_n) \mathrm{d}\sigma^{\otimes_n}.$$

- Symmetric $H_n: M^n \to (-\infty, \infty]$, n-particle energy,
- $\sigma \in \mathcal{P}(M)$, probability measure on M,
- $\beta_n \in [0, \infty)$, inverse temperature and
- $\mathcal{Z}_n = \int_{Mn} \exp(-n\beta_n H_n) d\sigma^{\otimes_n} \in (0, \infty)$, partition function.

Example: Two-body interaction model

$$G: M \times M \to (-\infty, \infty]$$
 bounded from below,

$$H_n(x_1, \dots, x_n) = \frac{1}{n^2} \sum_{i < j} G(x_i, x_j).$$

Question: macroscopic behavior

$$(X_1,\ldots,X_n)\sim \mathbb{P}_n$$
 and $\hat{\mu}_n=rac{1}{n}\sum_{i=1}^n\delta_{X_i}.$

Question: macroscopic behavior

$$(X_1,\ldots,X_n)\sim \mathbb{P}_n$$
 and $\hat{\mu}_n=rac{1}{n}\sum_{i=1}^n\delta_{X_i}.$

How $\{H_n\}_{n\in\mathbb{N}}$ determines the limit of $\{\hat{\mu}_n\}_{n\in\mathbb{N}}$?

lacksquare Sequence $\{H_n\}_{n\in\mathbb{N}}$ uniformly bounded from below

- lacksquare Sequence $\{H_n\}_{n\in\mathbb{N}}$ uniformly bounded from below and
- $\blacksquare H: \mathcal{P}(M) \to (-\infty, \infty].$

- Sequence $\{H_n\}_{n\in\mathbb{N}}$ uniformly bounded from below and
- $\blacksquare H: \mathcal{P}(M) \to (-\infty, \infty].$

Definition (Macroscopic limit)

H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$ if

- lacksquare Sequence $\{H_n\}_{n\in\mathbb{N}}$ uniformly bounded from below and
- $\blacksquare H: \mathcal{P}(M) \to (-\infty, \infty].$

Definition (Macroscopic limit)

H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$ if

 $\forall \mu \in \mathcal{P}(M)$

$$\lim_{n\to\infty}\mathbb{E}_{\mu^{\otimes n}}[H_n]=H(\mu)$$

- lacksquare Sequence $\{H_n\}_{n\in\mathbb{N}}$ uniformly bounded from below and
- $\blacksquare H: \mathcal{P}(M) \to (-\infty, \infty].$

Definition (Macroscopic limit)

H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$ if

 $\forall \mu \in \mathcal{P}(M)$

$$\lim_{n\to\infty}\mathbb{E}_{\mu^{\otimes n}}[H_n]=H(\mu)\quad\text{ and }\quad$$

• whenever $\frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \to \mu$

$$\liminf_{n\to\infty} H_n(x_1,\ldots,x_n) \ge H(\mu).$$

Example: Two-body interaction model

$$G: M \times M \to (-\infty, \infty]$$
 bounded from below,

$$H_n(x_1, \dots, x_n) = \frac{1}{n^2} \sum_{i < j} G(x_i, x_j).$$

Example: Two-body interaction model

 $G: M \times M \to (-\infty, \infty]$ bounded from below,

$$H_n(x_1,...,x_n) = \frac{1}{n^2} \sum_{i < j} G(x_i,x_j).$$

If G is lower semicontinuous,

$$H(\mu) = \frac{1}{2} \int_{M \times M} G(x, y) d\mu(x) d\mu(y)$$

is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$.

9/3

Relative entropy and free energy

Definition (Relative entropy)

Let $\mu \in \mathcal{P}(M)$. If $d\mu = \rho d\sigma$

$$D(\mu \| \sigma) = \int_{M} \rho \log \rho \, d\sigma.$$

Otherwise, $D(\mu \| \sigma) = \infty$.

Relative entropy and free energy

Definition (Relative entropy)

Let $\mu \in \mathcal{P}(M)$. If $d\mu = \rho d\sigma$

$$D(\mu \| \sigma) = \int_{M} \rho \log \rho \, d\sigma.$$

Otherwise, $D(\mu \| \sigma) = \infty$.

Definition (Free energy)

Let $\beta \in (0, \infty)$ and $H : \mathcal{P}(M) \to (-\infty, \infty]$. For $\mu \in \mathcal{P}(M)$

$$F_{\beta}(\mu) = H(\mu) + \frac{1}{\beta}D(\mu||\sigma).$$

Theorem (Laplace principle for positive temperature [GZ])

Suppose

• H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$

Theorem (Laplace principle for positive temperature [GZ])

Suppose

- lacksquare H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$ and
- $\{\beta_n\}_{n\in\mathbb{N}}$ converges to some $\beta\in(0,\infty)$.

Theorem (Laplace principle for positive temperature [GZ])

Suppose

- lacksquare H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$ and
- $\{\beta_n\}_{n\in\mathbb{N}}$ converges to some $\beta\in(0,\infty)$.

Let
$$I_{\beta}(\mu) = F_{\beta}(\mu) - \inf F_{\beta}$$
.

Theorem (Laplace principle for positive temperature [GZ])

Suppose

- lacksquare H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$ and
- $\{\beta_n\}_{n\in\mathbb{N}}$ converges to some $\beta\in(0,\infty)$.

Let
$$I_{\beta}(\mu) = F_{\beta}(\mu) - \inf F_{\beta}$$
. Then, \forall bounded continuous $f : \mathcal{P}(M) \to \mathbb{R}$,

$$\lim_{n \to \infty} \frac{1}{n\beta_n} \log \mathbb{E}\left[e^{-n\beta_n f(\hat{\mu}_n)}\right] = -\inf_{\mu \in \mathcal{P}(M)} \left\{f(\mu) + I_{\beta}(\mu)\right\}.$$

Theorem (Laplace principle for positive temperature [GZ])

Suppose

- H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$ and
- $\{\beta_n\}_{n\in\mathbb{N}}$ converges to some $\beta\in(0,\infty)$.

Let $I_{\beta}(\mu) = F_{\beta}(\mu) - \inf F_{\beta}$. Then, \forall bounded continuous $f : \mathcal{P}(M) \to \mathbb{R}$,

$$\lim_{n \to \infty} \frac{1}{n\beta_n} \log \mathbb{E} \left[e^{-n\beta_n f(\hat{\mu}_n)} \right] = -\inf_{\mu \in \mathcal{P}(M)} \left\{ f(\mu) + I_{\beta}(\mu) \right\}.$$

'Laplace principle' \equiv LDP for $\hat{\mu}_n$ with rate function I_{β} and at speed $n\beta_n$.

Theorem (Laplace principle for positive temperature [GZ])

Suppose

- H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$ and
- $\{\beta_n\}_{n\in\mathbb{N}}$ converges to some $\beta\in(0,\infty)$.

Let
$$I_{\beta}(\mu) = F_{\beta}(\mu) - \inf F_{\beta}$$
. Then, \forall bounded continuous $f : \mathcal{P}(M) \to \mathbb{R}$,

$$\lim_{n \to \infty} \frac{1}{n\beta_n} \log \mathbb{E} \left[e^{-n\beta_n f(\hat{\mu}_n)} \right] = -\inf_{\mu \in \mathcal{P}(M)} \left\{ f(\mu) + I_{\beta}(\mu) \right\}.$$

'Laplace principle' \equiv LDP for $\hat{\mu}_n$ with rate function I_{β} and at speed $n\beta_n$.

History: [Sanov '57], [Messer & Spohn '82], [Caglioti, Lions, Marchioro & Pulvirenti '92], [Bodineau & Guionnet '99], [Dupuis, Laschos & Ramanan '15] and [Berman '18].

A general model and a Laplace principle

Infinite β

And when $\beta_n \to \infty$? Two more conditions.

And when $\beta_n \to \infty$? Two more conditions.

• $\{H_n\}_{n\in\mathbb{N}}$ confining:

And when $\beta_n \to \infty$? Two more conditions.

• $\{H_n\}_{n\in\mathbb{N}}$ confining: If $H_n(x_1,\ldots,x_n)< A$ uniformly on n then

$$\left\{\frac{1}{n}\sum_{i=1}^n \delta_{x_i}\right\}_{n\in\mathbb{N}} \text{ is precompact in } \mathcal{P}(M).$$

12/3

And when $\beta_n \to \infty$? Two more conditions.

• $\{H_n\}_{n\in\mathbb{N}}$ confining: If $H_n(x_1,\ldots,x_n)< A$ uniformly on n then

$$\left\{\frac{1}{n}\sum_{i=1}^n \delta_{x_i}\right\}_{n\in\mathbb{N}} \text{ is precompact in } \mathcal{P}(M).$$

■ *H* regular:

12/3

And when $\beta_n \to \infty$? Two more conditions.

• $\{H_n\}_{n\in\mathbb{N}}$ confining: If $H_n(x_1,\ldots,x_n)< A$ uniformly on n then

$$\left\{\frac{1}{n}\sum_{i=1}^n \delta_{x_i}\right\}_{n\in\mathbb{N}} \text{ is precompact in } \mathcal{P}(M).$$

■ H regular: If $H(\mu) < \infty$ $\exists \{\mu_n\}_{n \in \mathbb{N}}$ s.t. $\mu_n \to \mu$,

$$\forall n, D(\mu_n \| \sigma) < \infty \text{ and } \lim_{n \to \infty} H(\mu_n) = H(\mu).$$

Example: Two-body interaction model

$$G: M \times M \to (-\infty, \infty]$$
 bounded from below,

$$H_n(x_1, \dots, x_n) = \frac{1}{n^2} \sum_{i < j} G(x_i, x_j).$$

Example: Two-body interaction model

 $G: M \times M \to (-\infty, \infty]$ bounded from below,

$$H_n(x_1, \dots, x_n) = \frac{1}{n^2} \sum_{i < j} G(x_i, x_j).$$

If $G(x,y) \to \infty$ whenever $x,y \to \infty$ at the same time then

 $\{H_n\}_{n\in\mathbb{N}}$ is confining.

Theorem (Laplace principle for zero temperature [GZ])

Suppose

• H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$

Theorem (Laplace principle for zero temperature [GZ])

Suppose

- H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$,
- $\{\beta_n\}_{n\in\mathbb{N}}$ tends to infinity

Theorem (Laplace principle for zero temperature [GZ])

Suppose

- H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$,
- $\{\beta_n\}_{n\in\mathbb{N}}$ tends to infinity,
- lacksquare $\{H_n\}_{n\in\mathbb{N}}$ is confining and
- *H* is regular.

Theorem (Laplace principle for zero temperature [GZ])

Suppose

- H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$,
- $\{\beta_n\}_{n\in\mathbb{N}}$ tends to infinity,
- lacksquare $\{H_n\}_{n\in\mathbb{N}}$ is confining and
- *H* is regular.

Let
$$I(\mu) = H(\mu) - \inf H$$
.

Theorem (Laplace principle for zero temperature [GZ])

Suppose

- H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$,
- $\{\beta_n\}_{n\in\mathbb{N}}$ tends to infinity,
- $lacksquare \{H_n\}_{n\in\mathbb{N}}$ is confining and
- H is regular.

Let $I(\mu) = H(\mu) - \inf H$. Then, \forall bounded continuous $f : \mathcal{P}(M) \to \mathbb{R}$,

$$\lim_{n\to\infty}\frac{1}{n\beta_n}\log\mathbb{E}\left[e^{-n\beta_nf(\hat{\mu}_n)}\right]=-\inf_{\mu\in\mathcal{P}(M)}\left\{f(\mu)+I(\mu)\right\}.$$

Theorem (Laplace principle for zero temperature [GZ])

Suppose

- H is the macroscopic limit of $\{H_n\}_{n\in\mathbb{N}}$,
- $\{\beta_n\}_{n\in\mathbb{N}}$ tends to infinity,
- $\{H_n\}_{n\in\mathbb{N}}$ is confining and
- H is regular.

Let $I(\mu) = H(\mu) - \inf H$. Then, \forall bounded continuous $f : \mathcal{P}(M) \to \mathbb{R}$,

$$\lim_{n\to\infty}\frac{1}{n\beta_n}\log\mathbb{E}\left[e^{-n\beta_nf(\hat{\mu}_n)}\right]=-\inf_{\mu\in\mathcal{P}(M)}\left\{f(\mu)+I(\mu)\right\}.$$

History: [Ben Arous & Guionnet '97], [Ben Arous & Zeitouni '98], [Hiai & Petz '98], [Zeitouni & Zelditch '10], [Hardy '12], [Chafaï Gozlan & Zitt '14], [Dupuis, Laschos & Ramanan '15] and [Berman '18].

A general model and a Laplace principle

Idea of the proof

Motivation: Weak convergence approach to large deviations of Dupuis and Ellis.

Let
$$i_n:M^n\to \mathcal{P}(M)$$
 be

$$i_n(x_1,\cdots,x_n) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$$

Let $i_n:M^n\to \mathcal{P}(M)$ be

$$i_n(x_1,\cdots,x_n) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$$

and write

$$\frac{1}{n\beta_n} \log \int_{M^n} \exp\left(-n\beta_n \left\{ f \circ i_n + H_n \right\} \right) d\sigma^{\otimes n}$$

$$= -\inf_{\nu \in \mathcal{P}(M^n)} \left\{ \mathbb{E}_{\nu} [f \circ i_n + H_n] + \frac{1}{n\beta_n} D(\nu \| \sigma^{\otimes n}) \right\}$$

Let $i_n:M^n\to \mathcal{P}(M)$ be

$$i_n(x_1,\cdots,x_n) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$$

and write

$$\frac{1}{n\beta_n} \log \int_{M^n} \exp\left(-n\beta_n \left\{ f \circ i_n + H_n \right\} \right) d\sigma^{\otimes n}$$

$$= -\inf_{\nu \in \mathcal{P}(M^n)} \left\{ \mathbb{E}_{\nu} [f \circ i_n + H_n] + \frac{1}{n\beta_n} D(\nu \| \sigma^{\otimes n}) \right\}$$

which converges to

$$-\inf_{\mu\in\mathcal{P}(M)}\left\{f(\mu)+H(\mu)+\frac{1}{\beta}D(\mu\|\sigma)\right\}.$$

Let $i_n:M^n\to \mathcal{P}(M)$ be

$$i_n(x_1,\cdots,x_n) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$$

and write

$$\frac{1}{n\beta_n} \log \int_{M^n} \exp\left(-n\beta_n \left\{ f \circ i_n + H_n \right\} \right) d\sigma^{\otimes_n}$$

$$= -\inf_{\nu \in \mathcal{P}(M^n)} \left\{ \mathbb{E}_{\nu} [f \circ i_n + H_n] + \frac{1}{n\beta_n} D(\nu \| \sigma^{\otimes_n}) \right\}$$

which converges to

$$-\inf_{\mu\in\mathcal{P}(M)}\left\{f(\mu)+H(\mu)+\frac{1}{\beta}D(\mu\|\sigma)\right\}.$$

Use macroscopic convergence and properties of the entropy!

Outline

A general model and a Laplace principle

Coulomb gas and concentration of measure

Background ensembles and limiting point processes

Selected perspectives

lacksquare M= compact oriented Riemannian manifold

- lacksquare M= compact oriented Riemannian manifold,
- lacksquare σ = volume measure on M (of unit mass)

- lacktriangleq M = compact oriented Riemannian manifold,
- lacksquare σ = volume measure on M (of unit mass) and
- G =Green function associated to some signed measure Λ .

- M =compact oriented Riemannian manifold,
- lacksquare σ = volume measure on M (of unit mass) and
- $G = Green function associated to some signed measure <math>\Lambda$.

Definition (Green function for a compact manifold)

Let Λ be a differentiable signed measure on M s.t. $\Lambda(M)=1$.

 $G: M \times M \to (-\infty, \infty]$ continuous s.t.

$$\Delta G(x,\cdot) = -\delta_x + \Lambda.$$

- M =compact oriented Riemannian manifold,
- lacksquare σ = volume measure on M (of unit mass) and
- $G = Green function associated to some signed measure <math>\Lambda$.

Definition (Green function for a compact manifold)

Let Λ be a differentiable signed measure on M s.t. $\Lambda(M)=1$. $G: M\times M \to (-\infty,\infty]$ continuous s.t.

$$\Delta G(x,\cdot) = -\delta_x + \Lambda.$$

■ $H_n(x_1,...,x_n) = \frac{1}{n^2} \sum_{i < j} G(x_i,x_j).$

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

Denote by η the standard metric on \mathbb{C} .

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

Denote by η the standard metric on \mathbb{C} .

 ${\color{red} \bullet} \ M = S^2 = \mathbb{C} \cup \{\infty\}$ endowed with $g = e^{-4V} \eta$

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

- $M = S^2 = \mathbb{C} \cup \{\infty\}$ endowed with $g = e^{-4V}\eta$,
- $\operatorname{d}\sigma = e^{-4V}\operatorname{d}\ell_{\mathbb{C}}$ normalized

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

- $M = S^2 = \mathbb{C} \cup \{\infty\}$ endowed with $g = e^{-4V}\eta$,
- $lack d\sigma = e^{-4V} d\ell_{\mathbb C}$ normalized,
- $\Lambda = \nu$

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

- $M = S^2 = \mathbb{C} \cup \{\infty\}$ endowed with $g = e^{-4V}\eta$,
- $d\sigma = e^{-4V} d\ell_{\mathbb{C}}$ normalized,

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

- $M = S^2 = \mathbb{C} \cup \{\infty\}$ endowed with $g = e^{-4V}\eta$,
- $d\sigma = e^{-4V} d\ell_{\mathbb{C}}$ normalized,

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

- $M = S^2 = \mathbb{C} \cup \{\infty\}$ endowed with $g = e^{-4V}\eta$,
- $d\sigma = e^{-4V} d\ell_{\mathbb{C}}$ normalized,
- $lack \Lambda =
 u = rac{1}{2\pi} \Delta V = rac{1}{4\pi} \mathrm{Ric}_g$ and
- $G(z,w) = -\frac{1}{2\pi} \log|z w| + \frac{1}{2\pi} V(z) + \frac{1}{2\pi} V(w)$

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

Denote by η the standard metric on \mathbb{C} .

- $M = S^2 = \mathbb{C} \cup \{\infty\}$ endowed with $g = e^{-4V}\eta$,
- $d\sigma = e^{-4V} d\ell_{\mathbb{C}}$ normalized,
- $lack \Lambda =
 u = rac{1}{2\pi} \Delta V = rac{1}{4\pi} \mathrm{Ric}_g$ and
- $G(z,w) = -\frac{1}{2\pi} \log|z w| + \frac{1}{2\pi} V(z) + \frac{1}{2\pi} V(w)$

so that

$$\Delta G(z,\cdot) = -\delta_z + \nu.$$

Let $\nu \in \mathcal{P}(\mathbb{C})$ and

$$V(z) = \int_{\mathbb{C}} \log|z - w| d\nu(w).$$

Denote by η the standard metric on \mathbb{C} .

- $M = S^2 = \mathbb{C} \cup \{\infty\}$ endowed with $g = e^{-4V}\eta$,
- $d\sigma = e^{-4V} d\ell_{\mathbb{C}}$ normalized,
- \blacksquare Λ = $\nu = \frac{1}{2\pi}\Delta V = \frac{1}{4\pi}\mathrm{Ric}_g$ and
- $G(z,w) = -\frac{1}{2\pi} \log|z w| + \frac{1}{2\pi} V(z) + \frac{1}{2\pi} V(w)$

so that

$$\Delta G(z,\cdot) = -\delta_z + \nu.$$

Then

$$d\mathbb{P}_n(z_1, \dots, z_n) = \frac{1}{\mathcal{Z}_n} \prod_{i < j} |z_i - z_j|^{\frac{\beta_n}{2\pi n}} e^{-(\frac{\beta_n}{2\pi n}(n-1)+4)\sum_{i=1}^n V(z_i)} d\ell_{\mathbb{C}^n}(z_1, \dots, z_n).$$

Convergence of empirical measures

If
$$\beta_n \to \infty$$
 and $(X_1, \dots, X_n) \sim \mathbb{P}_n$ then

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i} \xrightarrow{a.s.} \mu_{\text{eq}} \quad \text{where} \quad \mu_{\text{eq}} = \arg \min H.$$

Convergence of empirical measures

If
$$\beta_n \to \infty$$
 and $(X_1, \dots, X_n) \sim \mathbb{P}_n$ then

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i} \xrightarrow{a.s.} \mu_{\text{eq}} \quad \text{where} \quad \mu_{\text{eq}} = \arg \min H.$$

Definition (Kantorovich-Wasserstein distance)

$$W_1: \mathcal{P}(M) \times \mathcal{P}(M) \to [0, \infty)$$

$$W_1(\mu,\nu) = \inf_{X \sim \mu} \mathbb{E}\left[d(X,Y)\right].$$

Convergence of empirical measures

If $\beta_n \to \infty$ and $(X_1, \dots, X_n) \sim \mathbb{P}_n$ then

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i} \xrightarrow{a.s.} \mu_{\text{eq}} \quad \text{where} \quad \mu_{\text{eq}} = \arg \min H.$$

Definition (Kantorovich-Wasserstein distance)

$$W_1: \mathcal{P}(M) \times \mathcal{P}(M) \to [0, \infty)$$

$$W_1(\mu, \nu) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}\left[d(X, Y)\right].$$

This distance metrizes the weak convergence!

$$W_1(\hat{\mu}_n, \mu_{eq}) \xrightarrow{a.s.} 0.$$

Question: concentration of measure

LDP implies
$$\exists \mathcal{I}_r > 0$$
 and $\exists \varepsilon_n$ s.t. $\varepsilon_n \to 0$
$$\mathbb{P}\left(W_1(\hat{\mu}_n, \mu_{\mathrm{eq}}) \geq r \right) \leq \exp\left(-n\beta_n \mathcal{I}_r + n\beta_n \varepsilon_n \right).$$

Question: concentration of measure

LDP implies
$$\exists \mathcal{I}_r > 0$$
 and $\exists \varepsilon_n$ s.t. $\varepsilon_n \to 0$

$$\mathbb{P}\left(W_1(\hat{\mu}_n, \mu_{eq}) \ge r\right) \le \exp\left(-n\beta_n \mathcal{I}_r + n\beta_n \varepsilon_n\right).$$

Can we find a simple \mathcal{I}_r and ε_n ?

Concentration for Coulomb gases

Theorem (Concentration inequality [GZ])

If $\dim M = 2$ then $\exists C = C(M, \Lambda)$ s.t.

$$\mathbb{P}(W_1(\hat{\mu}_n, \mu_{eq}) \ge r) \le \exp\left(-n\beta_n \frac{r^2}{4} + \frac{\beta_n}{8\pi} \log(n) + nD(\mu_{eq} \| \sigma) + C\beta_n\right).$$

Concentration for Coulomb gases

Theorem (Concentration inequality [GZ])

If $\dim M = 2$ then $\exists C = C(M, \Lambda)$ s.t.

$$\mathbb{P}(W_1(\hat{\mu}_n, \mu_{eq}) \ge r) \le \exp\left(-n\beta_n \frac{r^2}{4} + \frac{\beta_n}{8\pi} \log(n) + nD(\mu_{eq} \| \sigma) + C\beta_n\right).$$

If dim $M \geq 3$ then $\exists C = C(M, \Lambda)$ s.t.

$$\mathbb{P}(W_1(\hat{\mu}_n, \mu_{\text{eq}}) \ge r) \le \exp\left(-n\beta_n \frac{r^2}{4} + nD(\mu_{\text{eq}} \| \sigma) + C\beta_n n^{1-2/\dim M}\right).$$

Concentration for Coulomb gases

Theorem (Concentration inequality [GZ])

If $\dim M = 2$ then $\exists C = C(M, \Lambda)$ s.t.

$$\mathbb{P}(W_1(\hat{\mu}_n, \mu_{eq}) \ge r) \le \exp\left(-n\beta_n \frac{r^2}{4} + \frac{\beta_n}{8\pi} \log(n) + nD(\mu_{eq} \| \sigma) + C\beta_n\right).$$

If dim $M \geq 3$ then $\exists C = C(M, \Lambda)$ s.t.

$$\mathbb{P}(W_1(\hat{\mu}_n, \mu_{\text{eq}}) \ge r) \le \exp\left(-n\beta_n \frac{r^2}{4} + nD(\mu_{\text{eq}} \| \sigma) + C\beta_n n^{1-2/\dim M}\right).$$

History: [Maïda & Maurel-Segala '12], [Rougerie & Serfaty '16], [Chafaï, Hardy & Maïda '18] and [Berman '19].

Coulomb gas and concentration of measure

Idea of the proof

Lemma (Energy-distance inequality)

$$\frac{1}{2}W_1(\mu, \mu_{eq})^2 \le H(\mu) - H(\mu_{eq}).$$

Lemma (Energy-distance inequality)

$$\frac{1}{2}W_1(\mu, \mu_{eq})^2 \le H(\mu) - H(\mu_{eq}).$$

Lemma (Regularization in two dimensions)

 $\exists R_n: M^n \to \mathcal{P}(M) \text{ and } C > 0 \text{ s.t.}$

$$H_n(x_1, ..., x_n) \ge H(R_n(x_1, ..., x_n)) - \frac{1}{8\pi n} \log(n) - \frac{C}{n}$$
 and

$$W_1\left(R_n(x_1,\ldots,x_n),\frac{1}{n}\sum_{i=1}^n\delta_{x_i}\right)\leq \frac{C}{\sqrt{n}}.$$

Lemma (Energy-distance inequality)

$$\frac{1}{2}W_1(\mu, \mu_{eq})^2 \le H(\mu) - H(\mu_{eq}).$$

Lemma (Regularization)

 $\exists R_n: M^n \to \mathcal{P}(M) \text{ and } C > 0 \text{ s.t.}$

$$H_n(x_1, \dots, x_n) \ge H(R_n(x_1, \dots, x_n)) - \frac{1}{8\pi n} \log(n) 1_{\dim M = 2} - \frac{C}{n^{2/\dim M}}$$
 and

$$W_1\left(R_n(x_1,\ldots,x_n),\frac{1}{n}\sum_{i=1}^n\delta_{x_i}\right)\leq \frac{C}{n^{1/\dim M}}.$$

Choice of R_n

Let $p_t(x,y)$ be the heat kernel and

$$\mathrm{d}\mu_x^t = p_t(x, y) \mathrm{d}\sigma(y).$$

Choice of R_n

Let $p_t(x,y)$ be the heat kernel and

$$\mathrm{d}\mu_x^t = p_t(x, y) \mathrm{d}\sigma(y).$$

Define

$$R^{t}(x_{1},...,x_{n}) = \frac{1}{n} \sum_{i=1}^{n} \mu_{x_{i}}^{t}$$

Choice of R_n

Let $p_t(x,y)$ be the heat kernel and

$$\mathrm{d}\mu_x^t = p_t(x, y) \mathrm{d}\sigma(y).$$

Define

$$R^{t}(x_{1},...,x_{n}) = \frac{1}{n} \sum_{i=1}^{n} \mu_{x_{i}}^{t}$$

and let

$$R_n = R^t$$
 for $t = n^{-2/\dim M}$.

Outline

A general model and a Laplace principle

Coulomb gas and concentration of measure

Background ensembles and limiting point processes

Selected perspectives

Determinantal case

Let $\nu \in \mathcal{P}(\mathbb{C})$ be rotationally invariant so that

$$V(z) = \int_1^{|z|} \frac{\nu(D_s)}{s} \mathrm{d}s.$$

Determinantal case

Let $\nu \in \mathcal{P}(\mathbb{C})$ be rotationally invariant so that

$$V(z) = \int_1^{|z|} \frac{\nu(D_s)}{s} \mathrm{d}s.$$

If $\beta_n = 4\pi n$ then

$$d\mathbb{P}_n(z_1, \dots, z_n) = \frac{1}{\mathcal{Z}_n} \prod_{i < j} |z_i - z_j|^2 e^{-2(n+1)\sum_{i=1}^n V(z_i)} d\ell_{\mathbb{C}^n}(z_1, \dots, z_n)$$

and the point process is determinantal!

Determinantal case

Let $\nu \in \mathcal{P}(\mathbb{C})$ be rotationally invariant so that

$$V(z) = \int_1^{|z|} \frac{\nu(D_s)}{s} \mathrm{d}s.$$

If $\beta_n = 4\pi n$ then

$$d\mathbb{P}_n(z_1, \dots, z_n) = \frac{1}{\mathcal{Z}_n} \prod_{i < j} |z_i - z_j|^2 e^{-2(n+1)\sum_{i=1}^n V(z_i)} d\ell_{\mathbb{C}^n}(z_1, \dots, z_n)$$

and the point process is determinantal!

If $(X_1,\ldots,X_n)\sim \mathbb{P}_n$ and $f:\mathbb{C}\to\mathbb{R}$ is bounded continuous then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i) = \int_{\mathbb{C}} f d\nu.$$

Question: uncharged regions

If supp $f \cap \text{supp } \nu = \emptyset$ then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i) = 0.$$

Question: uncharged regions

If supp $f \cap \text{supp } \nu = \emptyset$ then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i) = 0.$$

What is $\lim_{n\to\infty}\sum_{i=1}^n f(X_i)$?

Connected components of $\mathbb{C} \setminus \operatorname{supp} \nu$:

Connected components of $\mathbb{C} \setminus \operatorname{supp} \nu$: A family of possibilities (up to rescaling)

Connected components of $\mathbb{C} \setminus \operatorname{supp} \nu$:

A family of possibilities (up to rescaling)

 $\blacksquare \mathbb{D} = D_1$

Connected components of $\mathbb{C} \setminus \operatorname{supp} \nu$:

A family of possibilities (up to rescaling)

- \blacksquare $\mathbb{D} = D_1$,
- \blacksquare $\mathbb{C} \setminus \bar{\mathbb{D}}$

Connected components of $\mathbb{C} \setminus \operatorname{supp} \nu$:

A family of possibilities (up to rescaling)

- \blacksquare $\mathbb{D} = D_1$,
- lacksquare $\mathbb{C}\setminus ar{\mathbb{D}}$ and
- $\mathbb{A}_R = D_R \setminus \bar{\mathbb{D}}$ for R > 1.

Theorem (Limiting Bergman point process [Butez & GZ])

 $\forall \ f: \mathbb{C} \to \mathbb{R} \ \text{continuous and s.t. } \operatorname{supp} f \subset \mathbb{D}$

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i) = \sum_{z \in \mathcal{B}_{\mathbb{D}}} f(z)$$

in law

Theorem (Limiting Bergman point process [Butez & GZ])

 $\forall f: \mathbb{C} \to \mathbb{R}$ continuous and s.t. supp $f \subset \mathbb{D}$

$$\lim_{n\to\infty}\sum_{i=1}^n f(X_i) = \sum_{z\in\mathcal{B}_{\mathbb{D}}} f(z)$$

in law where $\mathcal{B}_{\mathbb{D}}$ is a DPP on \mathbb{D} with kernel

$$K(z,w) = \frac{1}{\pi(1-z\bar{w})^2}$$

with respect to Lebesgue measure.

Theorem (Limiting Bergman point process [Butez & GZ])

 $\forall \ f: \mathbb{C} \to \mathbb{R}$ continuous and s.t. $\operatorname{supp} f \subset \mathbb{D}$

$$\lim_{n\to\infty}\sum_{i=1}^n f(X_i) = \sum_{z\in\mathcal{B}_{\mathbb{D}}} f(z)$$

in law where $\mathcal{B}_{\mathbb{D}}$ is a DPP on \mathbb{D} with kernel

$$K(z,w) = \frac{1}{\pi(1-z\bar{w})^2}$$

with respect to Lebesgue measure.

History: [Ameur, Kang & Makarov '18].

$\mathbb{C}\setminus\bar{\mathbb{D}}$ is a connected component

$\mathbb{C}\setminus \bar{\mathbb{D}}$ is a connected component

Theorem (Limiting inverse Bergman point process [Butez & GZ])

 $\forall \ f:\mathbb{C} o \mathbb{R}$ continuous with a finite limit at ∞ and s.t. $\mathrm{supp}\, f \subset \mathbb{C} \setminus \bar{\mathbb{D}}$

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i) = \sum_{z \in \mathcal{B}_{\mathbb{D}}} f(1/z)$$

in law

$\mathbb{C}\setminus \bar{\mathbb{D}}$ is a connected component

Theorem (Limiting inverse Bergman point process [Butez & GZ])

 $\forall \ f:\mathbb{C} o \mathbb{R}$ continuous with a finite limit at ∞ and s.t. $\mathrm{supp}\, f \subset \mathbb{C} \setminus \bar{\mathbb{D}}$

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i) = \sum_{z \in \mathcal{B}_{\mathbb{D}}} f(1/z)$$

in law where $\mathcal{B}_{\mathbb{D}}$ is a DPP on \mathbb{D} with kernel

$$K(z, w) = \frac{1}{\pi (1 - z\bar{w})^2}$$

with respect to Lebesgue measure.

Theorem (Limiting Bergman point processes on \mathbb{A}_R [GZ])

Let $q = \mu(\bar{\mathbb{D}})$ and take a subsequence of integers s.t.

$$\exp\left(2\pi(n+1)q\,i\right) \to \exp\left(2\pi\gamma\,i\right)$$

for some $\gamma \in \mathbb{R}$ *.*

Theorem (Limiting Bergman point processes on \mathbb{A}_R [GZ])

Let $q = \mu(\bar{\mathbb{D}})$ and take a subsequence of integers s.t.

$$\exp\left(2\pi(n+1)q\,i\right) \to \exp\left(2\pi\gamma\,i\right)$$

for some $\gamma \in \mathbb{R}$. Then $\forall f : \mathbb{C} \to \mathbb{R}$ continuous and s.t. $\operatorname{supp} f \subset \mathbb{A}_R$

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i) = \sum_{z \in \mathcal{B}_{\mathbb{A}_R, \gamma}} f(z)$$

in law

Theorem (Limiting Bergman point processes on \mathbb{A}_R [GZ])

Let $q = \mu(\bar{\mathbb{D}})$ and take a subsequence of integers s.t.

$$\exp(2\pi(n+1)q\,i) \to \exp(2\pi\gamma\,i)$$

for some $\gamma \in \mathbb{R}$. Then $\forall f : \mathbb{C} \to \mathbb{R}$ continuous and s.t. $\operatorname{supp} f \subset \mathbb{A}_R$

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i) = \sum_{z \in \mathcal{B}_{\mathbb{A}_R, \gamma}} f(z)$$

in law where $\mathcal{B}_{\mathbb{A}_R,\gamma}$ is a DPP on \mathbb{A}_R associated to the kernel of

the orthogonal projection onto the space of holomorphic functions of \mathbb{A}_{R}

with weight $|z|^{-2\gamma}$.

 $\sum_{i=1}^{n} \delta_{X_i}$ is a DPP with kernel

$$K_n(z,w) = \sum_{l=0}^{n-1} a_l z^l \bar{w}^l e^{-(n+1)V(z)} e^{-(n+1)V(w)}$$

where

$$a_l = \left(\int_{\mathbb{C}} |z|^{2l} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

 $\sum_{i=1}^{n} \delta_{X_i}$ is a DPP with kernel

$$K_n(z,w) = \sum_{l=0}^{n-1} a_l z^l \bar{w}^l e^{-(n+1)V(z)} e^{-(n+1)V(w)}$$

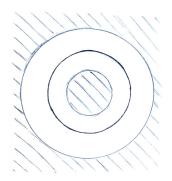
where

$$a_l = \left(\int_{\mathbb{C}} |z|^{2l} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

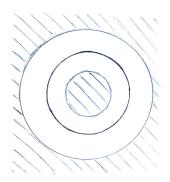
For the annulus,

$$\sum_{k=-\lfloor nq\rfloor}^{n-1-\lfloor nq\rfloor} a_{\lfloor nq\rfloor+k} \, z^k \bar{w}^k |z|^{\lfloor nq\rfloor} |w|^{\lfloor nq\rfloor} e^{-(n+1)V(z)} e^{-(n+1)V(w)}.$$

Suppose there are $R_1 < 1 < R_2$ s.t. $\nu\left(R_1 < |z| < R_2\right) = \nu(\partial \mathbb{D}) > 0$



Suppose there are $R_1 < 1 < R_2$ s.t. $\nu\left(R_1 < |z| < R_2\right) = \nu(\partial \mathbb{D}) > 0$ and let $q = \nu(\mathbb{D})$ and $Q = \nu(\bar{\mathbb{D}})$.



Suppose there are $R_1 < 1 < R_2$ s.t. $\nu\left(R_1 < |z| < R_2\right) = \nu(\partial \mathbb{D}) > 0$ and let $q = \nu(\mathbb{D})$ and $Q = \nu(\bar{\mathbb{D}})$.

Theorem (Behavior at the unit circle [GZ])

$$\lim_{n \to \infty} \sum_{i=1}^{n} \delta_{n(X_i - 1)} = \xi_{q,Q}$$

where $\xi_{a,O}$ is a DPP with kernel

$$K(z,w) = \frac{f(z)f(w)}{\pi} \int_{q}^{Q} \frac{(Q-t)(t-q)}{Q-q} e^{(z+\bar{w})t} dt,$$

$$f(x+iy)=e^{-qx}$$
 if $x<0$ and $f(x+iy)=e^{-Qx}$ if $x\geq 0$.

Suppose there are $R_1 < 1 < R_2$ s.t. $\nu\left(R_1 < |z| < R_2\right) = \nu(\partial \mathbb{D}) > 0$ and let $q = \nu(\mathbb{D})$ and $Q = \nu(\bar{\mathbb{D}})$.

Theorem (Behavior at the unit circle [GZ])

$$\lim_{n \to \infty} \sum_{i=1}^{n} \delta_{n(X_i - 1)} = \xi_{q,Q}$$

where $\xi_{q,Q}$ is a DPP with kernel

$$K(z,w)=\frac{f(z)f(w)}{\pi}\int_q^Q\frac{(Q-t)(t-q)}{Q-q}e^{(z+\bar{w})t}\mathrm{d}t,$$

$$f(x+iy)=e^{-qx} \text{ if } x<0 \quad \text{and} \quad f(x+iy)=e^{-Qx} \text{ if } x>0.$$

History: [Sinclair & Yattselev '12] and [Hedenmalm & Wennman '17].

Study

$$\rho_n(r) = \frac{1}{n^2} \sum_{k=0}^{n-1} a_k \left(1 + \frac{r}{n} \right)^{\left(\frac{k}{n}\right)n}$$

where

$$a_k = \left(\int_{\mathbb{C}} |z|^{2k} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

Study

$$\rho_n(r) = \frac{1}{n^2} \sum_{k=0}^{n-1} a_k \left(1 + \frac{r}{n} \right)^{\left(\frac{k}{n}\right)n}$$

where

$$a_k = \left(\int_{\mathbb{C}} |z|^{2k} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

Define $t^*(t) = \lfloor tn \rfloor / n$.

Study

$$\rho_n(r) = \frac{1}{n^2} \sum_{k=0}^{n-1} a_k \left(1 + \frac{r}{n} \right)^{\left(\frac{k}{n}\right)n}$$

where

$$a_k = \left(\int_{\mathbb{C}} |z|^{2k} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

Define $t^*(t) = \lfloor tn \rfloor / n$. Then

$$\rho_n(r) = \int_0^1 \frac{a_{t^*n}}{n} \left(1 + \frac{r}{n}\right)^{t^*n} dt$$

and take the limit!

Behavior of the maxima

Theorem (Compactly supported background [Butez & GZ])

If
$$\nu(\mathbb{C}\setminus D_R)=0$$
 and $\partial D_R\subset \operatorname{supp}\nu,$
$$\forall r\geq R,\quad \lim_{n\to\infty}\mathbb{P}\left(\max\{|X_1|,\dots,|X_n|\}< r\right)=\prod_{k=1}^\infty(1-R^{2k}r^{-2k}).$$

Behavior of the maxima

Theorem (Compactly supported background [Butez & GZ])

If
$$\nu(\mathbb{C} \setminus D_R) = 0$$
 and $\partial D_R \subset \operatorname{supp} \nu$,

$$\forall r \ge R, \quad \lim_{n \to \infty} \mathbb{P}\left(\max\{|X_1|, \dots, |X_n|\} < r\right) = \prod_{k=1}^{\infty} (1 - R^{2k} r^{-2k}).$$

Theorem (Non-compactly supported background [Butez & GZ])

If
$$\lim_{r\to\infty} r^{\alpha}\nu(\mathbb{C}\setminus D_r) = \lambda$$
,

$$\forall r > 0, \quad \lim_{n \to \infty} \mathbb{P}\left(n^{1/\alpha} \max\{|X_1|, \dots, |X_n|\} < r\right) = \prod_{k=1}^{\infty} \frac{\Gamma\left(\frac{2k}{\alpha}, \frac{2k}{\alpha}r^{-\alpha}\right)}{\Gamma\left(\frac{2k}{\alpha}\right)}.$$

Behavior of the maxima

Theorem (Compactly supported background [Butez & GZ])

If
$$\nu(\mathbb{C} \setminus D_R) = 0$$
 and $\partial D_R \subset \operatorname{supp} \nu$,

$$\forall r \ge R, \quad \lim_{n \to \infty} \mathbb{P}\left(\max\{|X_1|, \dots, |X_n|\} < r\right) = \prod_{k=1}^{\infty} (1 - R^{2k} r^{-2k}).$$

Theorem (Non-compactly supported background [Butez & GZ])

If
$$\lim_{r\to\infty} r^{\alpha}\nu(\mathbb{C}\setminus D_r) = \lambda$$
,

$$\forall r > 0, \quad \lim_{n \to \infty} \mathbb{P}\left(n^{1/\alpha} \max\{|X_1|, \dots, |X_n|\} < r\right) = \prod_{k=1}^{\infty} \frac{\Gamma\left(\frac{2k}{\alpha}, \frac{2\lambda}{\alpha}r^{-\alpha}\right)}{\Gamma\left(\frac{2k}{\alpha}\right)}.$$

History: [Rider '03], [Chafaï & Peche '14] and [Jiang & Qi '17].

Outline

A general model and a Laplace principle

Coulomb gas and concentration of measure

Background ensembles and limiting point processes

Selected perspectives

Macroscopic behavior

Recall the Coulomb gas law

$$d\mathbb{P}_n(z_1, \dots, z_n) = \frac{1}{\mathcal{Z}_n} \prod_{i < j} |z_i - z_j|^{\frac{\beta_n}{2\pi n}} e^{-(\frac{\beta_n}{2\pi n}(n-1)+4) \sum_{i=1}^n V(z_i)} d\ell_{\mathbb{C}^n}(z_1, \dots, z_n).$$

Macroscopic behavior

Recall the Coulomb gas law

$$d\mathbb{P}_n(z_1, \dots, z_n) = \frac{1}{\mathcal{Z}_n} \prod_{i < j} |z_i - z_j|^{\frac{\beta_n}{2\pi n}} e^{-\left(\frac{\beta_n}{2\pi n}(n-1) + 4\right) \sum_{i=1}^n V(z_i)} d\ell_{\mathbb{C}^n}(z_1, \dots, z_n).$$

It makes sense for any $\beta_n > -8\pi!$

Macroscopic behavior

Recall the Coulomb gas law

$$d\mathbb{P}_n(z_1, \dots, z_n) = \frac{1}{\mathcal{Z}_n} \prod_{i < j} |z_i - z_j|^{\frac{\beta_n}{2\pi n}} e^{-\left(\frac{\beta_n}{2\pi n}(n-1) + 4\right) \sum_{i=1}^n V(z_i)} d\ell_{\mathbb{C}^n}(z_1, \dots, z_n).$$

It makes sense for any $\beta_n > -8\pi!$

What happens when $\beta_n \downarrow -8\pi$?

36/39

Fluctuations

Suppose the background measure on M is $\Lambda=\sigma$ so that if

$$(X_1,\ldots,X_n)\sim {\sf Coulomb} {\sf \ gas \ on \ } M$$

then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i} = \sigma.$$

Fluctuations

Suppose the background measure on M is $\Lambda=\sigma$ so that if

$$(X_1,\ldots,X_n)\sim ext{ Coulomb gas on } M$$

then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i} = \sigma.$$

Suppose $\int_M f d\sigma = 0$ and $\beta_n = n\beta$.

What is
$$\lim_{n\to\infty}\sum_{i=1}^n f(X_i)$$
?.

37/3

Suppose supp $f \cap \operatorname{supp} \nu = \emptyset$. We know

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i)$$

in the determinantal case.

Suppose $\operatorname{supp} f \cap \operatorname{supp} \nu = \emptyset$. We know

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i)$$

in the determinantal case.

Three open questions:

Suppose $\operatorname{supp} f \cap \operatorname{supp} \nu = \emptyset$. We know

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i)$$

in the determinantal case.

Three open questions:

• What happens if ν is not radial?

Suppose supp $f \cap \text{supp } \nu = \emptyset$. We know

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i)$$

in the determinantal case.

Three open questions:

- What happens if ν is not radial?
- What happens in the non-determinantal case?

Suppose $\operatorname{supp} f \cap \operatorname{supp} \nu = \emptyset$. We know

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(X_i)$$

in the determinantal case.

Three open questions:

- What happens if ν is not radial?
- What happens in the non-determinantal case?
- What happens if we only assume $f|_{\text{supp }\nu}=0$?

Thank you for your attention!

Merci pour votre attention!

¡Gracias por su atención!

Extra frames

Proof of the annulus case

 $\sum_{i=1}^{n} \delta_{X_i}$ is a DPP with kernel

$$K_n(z,w) = \sum_{l=0}^{n-1} a_l z^l \bar{w}^l e^{-(n+1)V(z)} e^{-(n+1)V(w)}$$

where

$$a_l = \left(\int_{\mathbb{C}} |z|^{2l} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

Since $q = \mu(\mathbb{D})$, we have

$$V(z) = q \log |z| \quad \text{for} \quad z \in \bar{\mathbb{A}}_R$$

and

$$V(z) > q \log |z|$$
 if $z \notin \bar{\mathbb{A}}_R$.

Since $q = \mu(\mathbb{D})$, we have

$$V(z) = q \log |z|$$
 for $z \in \bar{\mathbb{A}}_R$

and

$$V(z) > q \log |z|$$
 if $z \notin \bar{\mathbb{A}}_R$.

We assume $\lim_{n\to\infty} \{(n+1)q - |nq|\} = \gamma$

Since $q = \mu(\mathbb{D})$, we have

$$V(z) = q \log |z|$$
 for $z \in \bar{\mathbb{A}}_R$

and

$$V(z) > q \log |z|$$
 if $z \notin \bar{\mathbb{A}}_R$.

We assume $\lim_{n\to\infty} \{(n+1)q - \lfloor nq \rfloor\} = \gamma$ so that

$$\lim_{n\to\infty}|z|^{\lfloor nq\rfloor}e^{-(n+1)V(z)}=|z|^{-\gamma}.$$

By a change of index

$$\left(\frac{|z|}{z}\right)^{\lfloor nq\rfloor} K_n(z,w) \left(\frac{|w|}{\bar{w}}\right)^{\lfloor nq\rfloor}
= \sum_{k=-\lfloor nq\rfloor}^{n-1-\lfloor nq\rfloor} a_{\lfloor nq\rfloor+k} z^k \bar{w}^k |z|^{\lfloor nq\rfloor} |w|^{\lfloor nq\rfloor} e^{-(n+1)V(z)} e^{-(n+1)V(w)}.$$

By a change of index

$$\left(\frac{|z|}{z}\right)^{\lfloor nq\rfloor} K_n(z,w) \left(\frac{|w|}{\bar{w}}\right)^{\lfloor nq\rfloor} \\
= \sum_{k=-\lfloor nq\rfloor}^{n-1-\lfloor nq\rfloor} a_{\lfloor nq\rfloor+k} z^k \bar{w}^k |z|^{\lfloor nq\rfloor} |w|^{\lfloor nq\rfloor} e^{-(n+1)V(z)} e^{-(n+1)V(w)}.$$

$$\lim_{n\to\infty} \left(\frac{|z|}{z}\right)^{\lfloor nq\rfloor} K_n(z,w) \left(\frac{|w|}{\bar{w}}\right)^{\lfloor nq\rfloor} = \sum_{k\in\mathbb{Z}} b_k z^k \bar{w}^k |z|^{-\gamma} |w|^{-\gamma}$$

where

$$b_k = \lim_{n \to \infty} a_{\lfloor nq \rfloor + k} = \left(\int_{\mathbb{A}_R} |z|^{2k} |z|^{-2\gamma} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

Study

$$\rho_n(r) = \frac{1}{n^2} \sum_{k=0}^{n-1} a_k \left(1 + \frac{r}{n} \right)^{\left(\frac{k}{n}\right)n}$$

where

$$a_k = \left(\int_{\mathbb{C}} |z|^{2k} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

Study

$$\rho_n(r) = \frac{1}{n^2} \sum_{k=0}^{n-1} a_k \left(1 + \frac{r}{n} \right)^{\left(\frac{k}{n}\right)n}$$

where

$$a_k = \left(\int_{\mathbb{C}} |z|^{2k} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

Define $t^*(t) = \lfloor tn \rfloor / n$.

Study

$$\rho_n(r) = \frac{1}{n^2} \sum_{k=0}^{n-1} a_k \left(1 + \frac{r}{n} \right)^{\left(\frac{k}{n}\right)n}$$

where

$$a_k = \left(\int_{\mathbb{C}} |z|^{2k} e^{-2(n+1)V(z)} d\ell_{\mathbb{C}}(z) \right)^{-1}.$$

Define $t^*(t) = |tn|/n$. Then

$$\rho(r) = \int_0^1 \frac{a_{t^*n}}{n} \left(1 + \frac{r}{n} \right)^{t^*n} dt.$$

Since

$$\lim_{n \to \infty} \frac{a_{t^*n}}{n} = \frac{1}{\pi} \frac{(Q-t)(t-q)}{Q-q} 1_{(q,Q)}(t)$$

Since

$$\lim_{n\to\infty}\frac{a_{t^*n}}{n}=\frac{1}{\pi}\frac{(Q-t)(t-q)}{Q-q}1_{(q,Q)}(t)\quad\text{and}\quad\lim_{n\to\infty}\left(1+\frac{r}{n}\right)^{t^*n}=e^{rt}$$

Since

$$\lim_{n\to\infty}\frac{a_{t^*n}}{n}=\frac{1}{\pi}\frac{(Q-t)(t-q)}{Q-q}1_{(q,Q)}(t)\quad\text{and}\quad\lim_{n\to\infty}\left(1+\frac{r}{n}\right)^{t^*n}=e^{rt}$$

we have

$$\lim_{n \to \infty} \rho_n(r) = \frac{1}{\pi} \int_q^Q \frac{(Q-t)(t-q)}{Q-q} e^{rt} dt.$$

Since

$$\lim_{n\to\infty}\frac{a_{t^*n}}{n}=\frac{1}{\pi}\frac{(Q-t)(t-q)}{Q-q}1_{(q,Q)}(t)\quad\text{and}\quad\lim_{n\to\infty}\left(1+\frac{r}{n}\right)^{t^*n}=e^{rt}$$

we have

$$\lim_{n \to \infty} \rho_n(r) = \frac{1}{\pi} \int_q^Q \frac{(Q-t)(t-q)}{Q-q} e^{rt} dt.$$

By Montel's theorem, the same for $r \in \mathbb{C}$.

Since

$$\lim_{n\to\infty}\frac{a_{t^*n}}{n}=\frac{1}{\pi}\frac{(Q-t)(t-q)}{Q-q}1_{(q,Q)}(t)\quad\text{and}\quad\lim_{n\to\infty}\left(1+\frac{r}{n}\right)^{t^*n}=e^{rt}$$

we have

$$\lim_{n \to \infty} \rho_n(r) = \frac{1}{\pi} \int_q^Q \frac{(Q-t)(t-q)}{Q-q} e^{rt} dt.$$

By Montel's theorem, the same for $r \in \mathbb{C}$. Then, choose

$$r_n = z + \bar{w} + \frac{zw}{n}$$

that satisfies

$$\lim_{n\to\infty} r_n = z + \bar{w} \quad \text{uniformly on compact sets.}$$