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System of n (random) particles in the Polish space M.

Definition (Gibbs measure of n particles)

1
dP, = — exp(—nB,H,)do®".
Zn

® Symmetric H,, : M™ — (—o0, o], n-particle energy,
o € P(M), probability measure on M,

Brn € [0,00), inverse temperature and
Zy = [y exp(—nfHy)do® € (0,00), partition function.
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1
(X1,...,X,) ~P, and anﬁzcsxi.

How {H, },cn determines the limit of {/i,},cn?

7/39



A general model and a Laplace principle

Notion of limit

m Sequence {H, },cn uniformly bounded from below

8/39



A general model and a Laplace principle

Notion of limit

m Sequence {H, },en uniformly bounded from below and
" H:P(M)— (—o0,00].

8/39



A general model and a Laplace principle

Notion of limit

m Sequence {H, },en uniformly bounded from below and
" H:P(M)— (—o0,00].

Definition (Macroscopic limit)

H is the macroscopic limit of {H,, }nen if

8/39



A general model and a Laplace principle

Notion of limit

m Sequence {H, },en uniformly bounded from below and
" H:P(M)— (—o0,00].

Definition (Macroscopic limit)

H is the macroscopic limit of {H,, }nen if

® Ve P(M)
g lim E e, [H,] = H(u)

n—oo

8/39



A general model and a Laplace principle

Notion of limit

m Sequence {H, },en uniformly bounded from below and
" H:P(M)— (—o0,00].

Definition (Macroscopic limit)

H is the macroscopic limit of {H,, }nen if

® Ve P(M)
lim E,e,[H,] = H(u) and

n—oo
1 n
= whenever = Y " 0y —

liminf H,(z1,...,2,) > H(W).

n—o0
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A general model and a Laplace principle

Example: Two-body interaction model

G: M x M — (—o0,00] bounded from below,

1
Hy(z1,...,2,) = 3 Z G(xi, xj).

1<j

If G is lower semicontinuous,

H(u) = /MxM G, y)dpu(z)du(y)

1
2

is the macroscopic limit of {H,, }nen.
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Relative entropy and free energy

Definition (Relative entropy)
Let u € P(M). If du = pdo

D(ullo) = / plog pdo.
M
Otherwise, D(ullo) = oc.

Definition (Free energy)
Let 5 € (0,00) and H : P(M) — (—o0,00]. For u € P(M)

Fa(u) = H(p) + %Dwno»
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A Laplace principle

Theorem (Laplace principle for positive temperature [GZ])

Suppose
m H is the macroscopic limit of { H;, }nen and
® {5, }nen converges to some 5 € (0, 00).
Let I3(p) = F(p) — inf Fg. Then, ¥ bounded continuous f : P(M) — R,

1 N
i _ —nfn f(fin) — — ]
Jim 5 logE [e ] ue%l(fM) {F () + Ig(p)}-

‘Laplace principle’ = LDP for /i,, with rate function I3 and at speed n[,.

History: [Sanov '57],
[Messer & Spohn '82], [Caglioti, Lions, Marchioro & Pulvirenti '92],
[Bodineau & Guionnet '99], [Dupuis, Laschos & Ramanan '15] and [Berman '18].



A general model and a Laplace principle

Infinite 3

And when 3,, — o0? Two more conditions.

12/39



A general model and a Laplace principle

Infinite 3

And when 3,, — o0? Two more conditions.

m {H,},en confining:

12/39



A general model and a Laplace principle

Infinite 3

And when 3,, — o0? Two more conditions.

m {H,},en confining: If Hy,(z1,...,2,) < A uniformly on n then

1 n
{— 25%} is precompact in P(M).
" i=1 neN

12/39



A general model and a Laplace principle

Infinite 3

And when 3,, — o0? Two more conditions.

m {H,},en confining: If Hy,(z1,...,2,) < A uniformly on n then
1< _ :
{— Z(SIZ} is precompact in P(M).
" i=1 neN

= H regular:

12/39
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Infinite 3

And when 3,, — o0? Two more conditions.

m {H,},en confining: If Hy,(z1,...,2,) < A uniformly on n then

1 n
{— Z 5:01} is precompact in P(M).
" i=1 neN

m H regular: If H(u) < oo
3 {,U/n}nEN s.t. bn — 4,

Vn, D(pn|lo) < oo and li_>m H(pyn) = H(p).
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A general model and a Laplace principle

Example: Two-body interaction model

G: M x M — (—00,00] bounded from below,

1
Hy(x1,...,2y) = 2 Z G(xi, xj).

1<j
If G(x,y) — oo whenever z,y — oo at the same time then

{Hp}nen is confining.

13/39



A general model and a Laplace principle

A Laplace principle

Theorem (Laplace principle for zero temperature [GZ])

Suppose
® H is the macroscopic limit of {Hp}pen

14/39



A general model and a Laplace principle

A Laplace principle

Theorem (Laplace principle for zero temperature [GZ])

Suppose
® H is the macroscopic limit of {Hy, }nen,
® {8, }nen tends to infinity

14/39



A general model and a Laplace principle

A Laplace principle

Theorem (Laplace principle for zero temperature [GZ])

Suppose
m H is the macroscopic limit of { H;, }nen,

{Bn}nen tends to infinity,

{Hy\}nen is confining and

H is regular.

14/39



A general model and a Laplace principle

A Laplace principle

Theorem (Laplace principle for zero temperature [GZ])

Suppose
® H is the macroscopic limit of {Hy, }nen,
® {B,}nen tends to infinity,
® {H,}nen is confining and
m H s regular.
Let I(p) = H(p) —inf H.

14/39



A general model and a Laplace principle

A Laplace principle

Theorem (Laplace principle for zero temperature [GZ])

Suppose
® H is the macroscopic limit of {Hy, }nen,
® {B,}nen tends to infinity,
® {H,}nen is confining and
m H s regular.
Let I(n) = H(pn) —inf H. Then, ¥ bounded continuous f : P(M) — R,

T —nBaf(in)] — _
Jim =~ logE e | = g {7+ 1)}

14/39
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A Laplace principle

Theorem (Laplace principle for zero temperature [GZ])

Suppose
® H is the macroscopic limit of {Hy, }nen,
® {B,}nen tends to infinity,
® {H,}nen is confining and
m H s regular.
Let I(n) = H(pn) —inf H. Then, ¥ bounded continuous f : P(M) — R,

_— B f(in)] — _
Jim - logE e | = = dnt () + ()}

History: [Ben Arous & Guionnet '97], [Ben Arous & Zeitouni ‘98], [Hiai & Petz '98],
[Zeitouni & Zelditch '10], [Hardy '12], [Chafai’ Gozlan & Zitt '14],
[Dupuis, Laschos & Ramanan '15] and [Berman '18].
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A general model and a Laplace principle

|dea of the proof

Motivation: Weak convergence approach to large deviations of Dupuis and Ellis.
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|dea of the proof

Let iy, : M™ — P(M) be
1
in(T1, ) =— Y O,
in(z1, ) nE :

and write

1
—log/ €xp (_n/Bn {foén + Hn}) do®n
M’ﬂ

nPn

B : . 1 ®n
= 1/67171(1}\‘4") {Ey[f oy + Hy| + %D(VHO' )}

which converges to

. 1
_ He%l(fM) {f(u) + H(p) + BD(MIIU)} :

Use macroscopic convergence and properties of the entropy!
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Coulomb gas on a compact manifold

® M = compact oriented Riemannian manifold,
® g = volume measure on M (of unit mass) and

®m (G = Green function associated to some signed measure A.

Definition (Green function for a compact manifold)

Let A be a differentiable signed measure on M s.t. A(M) = 1.
G : M x M — (—o0, o] continuous s.t.

AG(z,-) = =0y + A.

u Hn(ml, .. ,xn) = n_122i<j G(:L‘l,aij)
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Coulomb gas and concentration of measure

Example: Standard 2D Coulomb gas
Let v € P(C) and

V(z)= /(Clog |z — w|dv(w).

Denote by n the standard metric on C.
m M = S5%=CU{oo} endowed with g = ¢4V,
® do = e *Vdlc normalized,
E A =v= %AV = %Ricg and
B G(z,w) = —5loglz —w|+ £V (z) + £ V(w)

so that
AG(z,-) = =0, + 1.

Then

1 n n n .
dPn(Zla s ,Zn) = Z_ H |Zl - zj|£7€_(£7(n_l)+4) st V(Zl)dg(cn (Zlv s azn)‘
"<y
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Convergence of empirical measures

If 5, — oo and (X1,...,X,) ~ P, then

1 n
fin, = - ZdXi L5 feq Where [ioq = arg min H.
i=1
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Coulomb gas and concentration of measure

Convergence of empirical measures

If B, = o0 and (X1,...,X,) ~ P, then

1 n
fin, = — g 6x;, =25 leq Where  fioq = argmin H.
n

=1

Definition (Kantorovich-Wasserstein distance)

Wi :P(M) x P(M) — [0,00)

Wi(p,v) = XNiﬂn)f/NV]E [d(X,Y)].

This distance metrizes the weak convergence!

a.s

Wl(ﬂn, ,ueq) — 0.

19/39



Coulomb gas and concentration of measure
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Coulomb gas and concentration of measure

Question: concentration of measure

LDP implies 97, > 0 and de¢,, s.t. £, = 0

P (W1 (fin, Meq) >r) < exp (—nBnLy +nbnen) .

Can we find a simple Z,. and ¢,,?
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Coulomb gas and concentration of measure

Concentration for Coulomb gases

Theorem (Concentration inequality [GZ])
If dim M = 2 then 3C = C(M, A) s.t

ﬂn

P(W1(fin, feq) > 1) < exp ( nﬂn log( ) + nD(peqllo) + Cﬂn) .
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Concentration for Coulomb gases

Theorem (Concentration inequality [GZ])
If dim M = 2 then 3C = C(M, A) s.t

P(W1(fin, Meq) > T) < exp ( nﬂ" ﬂn

" log(n) + nDuqlo) + Cn ).
If dim M > 3 then 3C = C(M, A) s.t

P(W1(fin, teq) > 1) < €Xp ( nﬁn + nD(pieqllo) + CBan'~ 2/d1mM)

History: [Maida & Maurel-Segala '12], [Rougerie & Serfaty '16],
[Chafai, Hardy & Maida '18] and [Berman '19].
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Coulomb gas and concentration of measure

|dea of the proof

Lemma (Energy-distance inequality)

W1t toa)® < H (1) — H(jin).

Lemma (Regularization in two dimensions)

AR, : M™ — P(M) and C > 0 s.t.

Hy(x1,...,xn) > HRp(z1, ..., 7)) — — log(n) — % ]
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Coulomb gas and concentration of measure

|dea of the proof

Lemma (Energy-distance inequality)
1 2
§W1 (K peq)” < H(p) — H(pteg)-

Lemma (Regularization)

AR, : M™ — P(M) and C > 0 s.t.

1 C
Hn(l‘l, e ,LI,'n) > H(Rn(l‘l, ce ,l‘n)) — % log(n)ldimMzg — W and

1 — C
Wy <Rn(x17"~axn)7ﬁ25:ci) < W
=1
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Coulomb gas and concentration of measure

Choice of R,

Let pt(x,y) be the heat kernel and

dp, = pe(z, y)do(y).
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Coulomb gas and concentration of measure

Choice of R,

Let pt(x,y) be the heat kernel and

dul, = pi(z,y)do(y).
Define
1 n
Ri(z1,...,2,) = - Zl'ui’

and let

R,=R! for t= p—2/dim M

23/39
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Determinantal case

Let v € P(C) be rotationally invariant so that

2l
V(z) :/1 (Ds)ds.

S

If B,, = 4mn then

1 —2(n n Zi
dPp(z1,...,2,) = = H |2 — 2|22 DL VEIQlon (21, . . ., 2n)
i<y

and the point process is determinantal!
If (X1,...,Xn) ~P, and f:C — R is bounded continuous then

L
i D70 = [ sa
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Background ensembles and limiting point processes

Question: uncharged regions

If supp f Nsuppv = () then

What is lim,, o0 327, f(X;)?
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Background ensembles and limiting point processes

Possible cases

Connected components of C \ supp v:
A family of possibilities (up to rescaling)

= D=D,
= C\D and
L AR:DR\DfOI‘R>1.

27/39
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D is a connected component

Theorem (Limiting Bergman point process [Butez & GZ])

V f: C — R continuous and s.t. supp f C D

Jim 0 f(X:) =D f(2)

zEBp

in law
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Background ensembles and limiting point processes
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V f: C — R continuous and s.t. supp f C D
lim Y fG) =) ()
=1 zEBp
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e ==y

with respect to Lebesgue measure.

History: [Ameur, Kang & Makarov '18].
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Ap is a connected component

Theorem (Limiting Bergman point processes on Ay [GZ])

Let g = u(D) and take a subsequence of integers s.t.
exp (2m(n + 1)qi) — exp (27 )
for some v € R. ThenV f:C — R continuous and s.t. supp f C Ag
n
lim Y f(X)= Y f(2)
=1 ZGBAR/‘/
in law where By,  is a DPP on AR associated to the kernel of
the orthogonal projection onto the space of holomorphic functions of Ap

with weight |z|=27.
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|dea of the proof

>, 0x, is a DPP with kernel

n—1
Kn(z, ’LU) = Z alzlwle_(n+1)v(z)e—(n+1)V(w)
=0

-1
a; = (/ |z|2le_2("+1)v(z)d&c(z)> .
C

where
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|dea of the proof

>, 0x, is a DPP with kernel

n—1

Kn(z, ’LU) = Z alzlwle_(n+1)v(z)e—(n+1)V(w)
=0
where 3
a; = (/ |z|2le—2(n+1)V(z)d€C(Z)> .
C
For the annulus,
n—1—|nq]
Z Q| ng|+k kak\zﬂ”‘ﬂ ]w|L”qJe*(”H)V(Z)e—(n+1)V(w)‘
k=—|nq]
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Behavior between two uncharged regions

Suppose there are B; <1< Ry sit. v(Ry < |z| < Rp) =v(9D) >0 and let
g=v(D) and Q = v(D).

Theorem (Behavior at the unit circle [GZ])

Jim Y bnxi-1) = 0@
i=1

where &, o is a DPP with kernel

f(2)f(w) /Q Q== (tayg,

K(z,w) = - 0—q

flx+iy) =e ® ifr <0 and f(x+iy) =e 9% ifz>0.
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Behavior between two uncharged regions

Suppose there are Ry <1 < Ry s.t. v(R; < |z2] < Rg) =v(dD) > 0 and let
q=v(D) and Q = v(D).

Theorem (Behavior at the unit circle [GZ])

Jim > onx-n) = &
i=1

where &, o is a DPP with kernel

) f(w) [9(Q—t)(t— 9 ()t
- /q O—q to)tat,

flx+iy) =e @ ifr <0 and f(x+iy) =e 9% ifz>0.

K(z,w) =

History: [Sinclair & Yattselev '12] and [Hedenmalm & Wennman '17].
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where

-1
ay = (/ |z|2k6_2("+1)v(z)dfc(z)) .
C
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|dea of the proof

Study

1
pn(r) = 32 (1 + —

where

-1
an = ( / |z|2ke—2<n+1>V<z>deC(z>) |
C

Define t*(t) = |tn]|/n. Then

and take the limit!
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Behavior of the maxima

Theorem (Compactly supported background [Butez & GZ])
If v(C\Dr)=0 and ODpg Csuppv,

o
. 2k —2k
¥r>R, lim P(max{|Xi],...,|Xa} <r) = k]:[l R
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Behavior of the maxima

Theorem (Compactly supported background [Butez & GZ])
If v(C\Dr)=0 and ODpg C suppv,

o
. 2k —2k
¥r>R, lim P(max{|Xi],...,|Xa} <r) = k]:[l R

Theorem (Non-compactly supported background [Butez & GZ])
If li)m r*v(C\ D,) = A,

T 0 ]_'\(21@ 2\ —oc)
Vr >0, lim P(n/%max{|X1|,...,|Xn|} <7r)= ~Vara® )
n—00 ( ) ]E P(zolf)

History: [Rider ‘03], [Chafai & Peche '14] and [Jiang & Qi '17].
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Selected perspectives

Macroscopic behavior

Recall the Coulomb gas law
1 n n n .
dPn(z1,- oo 2n) = = 1B z|7re (D) DI VE Qhen (2, . 20).
i<y
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Recall the Coulomb gas law
1 n n n .
dPn(z1,- oo 2n) = = 1B z|7re (D) DI VE Qhen (2, . 20).
i<y

It makes sense for any (3, > —8r!

What happens when 5, | —877?
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Selected perspectives

Fluctuations

Suppose the background measure on M is A = o so that if
(X1,...,X,) ~ Coulomb gas on M

then
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lim — g ox, =o0.
n—oo N 4 i
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Selected perspectives

Fluctuations

Suppose the background measure on M is A = o so that if

(X1,...,X,) ~ Coulomb gas on M

then
1 n
lim —» dx, =o.
Jm 52 0x=o
1=

Suppose [,, fdo =0 and j3, = np.

n

What is lim » ~ f(X;)?.

n—o0 4
i=1
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Selected perspectives

Uncharged region

Suppose supp f Nsuppr = 0. We know

n

lim Y f(X0)
=1

in the determinantal case.
Three open questions:
® What happens if v is not radial?
® What happens in the non-determinantal case?

® What happens if we only assume f|supp, = 07

38/39



Thank you for your attention!

Merci pour votre attention!

iGracias por su atencion!
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Proof Annulus case, p.1

S 1 0x, is a DPP with kernel

n—1
Kn(z,w) = Z alzlwlef(n+1)\/(z)ef(n+1)v(w)
=0

-1
a; = </ |z]21e2(”+1)v(2)d£<c(2)> )
C

where



Proof Annulus case, p.2

Since ¢ = pu(ID), we have
V(z) =qlogl|z| for z¢€Ag

and B
V(z) > qlogl|z| if =z ¢ Ag.
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Proof Annulus case, p.2

Since ¢ = pu(ID), we have
V(z) =qlogl|z| for z¢€Ag

and B
V(z) > qlogl|z| if =z ¢ Ag.

We assume lim,,_,oc {(n + 1)q — |ng]} = so that

lim |z|lP4)e=(HDVE) — |77,
n—oo
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(@) |nal Ko (2, w) (|Zy> lng]
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Proof Annulus case, p.3

By a change of index

(@) |nal Ko (2, w) (T) lng]

n—1-|nq]
= Z | ng|+k kak:‘z| [naq] ‘w| [ng] 67(7L+1)V(z)6—(n+1)\/(w) '

k=—|na

. 12|\ w4 P
7 n — = b Y ¥

kEZ

where

-1
by = lim Ulng|+k = (/ ’Z\Qk\Z]_27d£C(z)) .
o0 AR
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Proof of the behavior at the unit circle, p.1

Study

where

-1
_ (/ |Z’2k62(n+1)v(z)d€(c(z)> )
C

Define t*(t) = |tn]/n. Then
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Since

(Q_t)(t—q) . r t*n_ rt
Q—q 14 (t) and 71113010 (1 + 5) —e

: QAt*n
lim -

n—oo N

N |~
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Proof of the behavior at the unit circle, p.2

Since

n—oo n

- apn _ 1(Q—1)(t—q) . e
lim = a 04 Ligo)(t) and  lim (1 + 5) —e

n—oo

we have 0
. 1 (Q@-1(—q)
lim p,(r) = / ————~e"dt.
n—00 ( ) T Jq Q —q
By Montel's theorem, the same for r € C. Then, choose

'm =2+wW+ —
n

that satisfies

lim r, = z+w uniformly on compact sets.
n—oo
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