Exercise Sheet 2. Divisors

Let X be a (connected and) compact Riemann surface.

- Div(X) = free abelian group generated by X. An element of Div(X) can be written as $\sum_{i=1}^{k} n_i[p_i]$ with $n_i \in \mathbb{Z}$ and $p_i \in X$, and the elements of Div(X) are called $divisors^1$.
- The morphism $\operatorname{div}: \mathcal{M}(X)^* \mapsto \operatorname{Div}(X)$ is given by

$$\operatorname{div} f = \sum_{p \in X} \operatorname{ord}_p f[p].$$

- A divisor div f is called a principal divisor and $Princ(X) = \{div f : f \in \mathcal{M}(X)^*\}.$
- Two divisors are *linearly equivalent* if their difference is a principal divisor.
- Define deg : $\operatorname{Div}(X) \to \mathbb{Z}$ by $\operatorname{deg}(\sum_{i=1}^k n_i[p_i]) = \sum_{i=1}^k n_i$ and its kernel $\operatorname{Div}^0(X)$.
- We say $D = \sum_{i=1}^k n_i[p_i] \in \text{Div}(X)$ is effective and write $D \ge 0$ if $n_i \ge 0$ for every i.
- For two divisors $D_1, D_2 \in \text{Div}(X)$, we write $D_1 \geq D_2$ if $D_1 D_2$ is effective.
- For $D \in \text{Div}(X)$, we consider the vector space

$$L(D) = \{ f \in \mathcal{M}(X) : f = 0 \text{ or } \operatorname{div} f + D > 0 \}.$$

• We use the notation $\ell(D) = \dim(L(D))$.

Exercise 1. Show that if D_1 and D_2 are linearly equivalent then $deg(D_1) = deg(D_2)$.

Exercise 2. Let $f_1, f_2 \in \mathcal{M}(X)^*$. Show that if $\operatorname{div} f_1 = \operatorname{div} f_2$ then $f_1 = \alpha f_2$ with $\alpha \in \mathbb{C}^*$.

Exercise 3. Let $f \in \mathcal{M}(X)^*$. Show that L(div f) is generated by 1/f.

Exercise 4. Show that $Div(X) \simeq \mathbb{Z} \times Div^{0}(X)$.

Exercise 5. Show that if D_1 and D_2 are linearly equivalent then $\ell(D_1) = \ell(D_2)$.

Exercise 6. Let $D \in \text{Div}(X)$ be an effective divisor. Show that $\ell(D) \leq \deg(D) + 1$.

Exercise 7. Show that if deg(D) < 0 then L(D) = 0.

Exercise 8. Show that $\ell(D) > 0$ if and only if there exists $\tilde{D} \sim D$ such that $\tilde{D} \geq 0$.

Exercise 9. Suppose that $E \in \text{Div}(X)$ satisfies $\ell(D-E) > 0$. Show that there exists $\tilde{D} \in \text{Div}(X)$ such that $\tilde{D} \sim D$ and $\tilde{D} \geq E$.

Exercise 10. Let $D \in \text{Div}^0(X)$. Show that $D \in \text{Princ}(X)$ if and only if $\ell(D) \geq 1$.

Exercise 11. Let $D \in \text{Div}^0(X)$. Show that $\ell(D) = \ell(-D)$.

¹The group Div(X) has a natural topological group structure by identifying $\sum_{i=1}^{k} n_i[p_i]$ with the measure $\sum_{i=1}^{k} n_i \delta_{p_i}$ and considering the weak topology on the space of finite measures..

Exercise 12 (Sphere case). Consider $X = \mathbb{C} \cup \{\infty\}$.

- 1. Is $f: X \setminus \{\infty\} \to \mathbb{C}$ given by f(z) = z meromorphic over X? What is its divisor?
- 2. Show that every holomorphic function over X is constant by looking at it under the two charts (without using Liouville's theorem).
- 3. Show that $Princ(X) = Div^0(X)$.
- 4. Describe $L(k[\infty])$ explicitly for $k \ge 0$. What do we obtain for k < 0?
- 5. Let $D \in \text{Div}(X)$. Find $\ell(D)$.
- 6. Give a (more or less) explicit description of L(D) for $D \in Div(X)$.

Exercise 13 (Torus case). Consider an elliptic curve $X = \mathbb{C}/\Gamma$.

- 1. Show that $\mathrm{Div}^0(X)/\mathrm{Princ}(X)$ is isomorphic to \mathbb{C}/Γ . Deduce that $\mathrm{Div}(X)/\mathrm{Princ}(X)$ is isomorphic to $\mathbb{Z}\times(\mathbb{C}/\Gamma)$.
- 2. Suppose that $D \in \text{Div}(X)$ satisfies $\deg(D) \geq 1$. Show that there exists $p \in X$ such that D is linearly equivalent to $\deg(D)[p]$.
- 3. Let $D \in \text{Div}(X)$ satisfy $\deg(D) \geq 1$. Show that $\ell(D) = \deg(D)$.

Exercise 14. Let $k \geq 1$ and let $P = (z - a_1) \dots (z - a_k)$ be a monic polynomial with simple roots. Let us consider the Riemann surface

$$X = \{(z, w) \in \mathbb{C}^2 : w^2 = P(z)\}.$$

Take the functions w and z obtained by restricting the coordinates w and z of \mathbb{C}^2 to X.

- 1. Are the functions w and z holomorphic over X? Justify your answer using the definition.
- 2. Find $\operatorname{div} w$.
- 3. Find divz.

Suppose that we have a **compact** Riemann surface S containing X such that $S \setminus X$ has a finite number of points (in particular, X is an open subset of S).

- 4. Can we extend w and z to S? Holomorphically? Meromorphically?
- 5. Show that $S \setminus X$ has at most 2 points.

²We can also show that they are isomorphic as topological groups.