
Edge fluctuations for random normal matrix ensembles

Let me define the one I consider a geometric and nice-looking case. Consider a probability
measure ν of finite logarithmic energy on C and define

V ν(z) =

∫
C

log |z − w|dν(w).

Consider n particles of charge qn = 1
n+1 interacting with the charge −ν so that

Hν
n(z1, . . . , zn) = −q2n

∑
i<j

log |zi − zj |+ qn

n∑
i=1

V ν(zi).

is the total potential energy of this system of particles. Consider the system at inverse temperature
βn = 2(n+ 1)2, i.e., consider the probability measure on Cn

dPνn(z1, . . . , zn) =
1

Z
exp(−βnHν

n(z1, . . . , zn))d`Cn(z1, . . . , zn)

=
1

Z
∏
i<j

|zi − zj |2e−2(n+1)
∑n
i=1 V

ν(zi)d`Cn(z1, . . . , zn).

The reason why it may be nice to choose a charge 1
n+1 for each particle is because in this case

the map ν 7→ Pνn is invariant under conformal transformations1 (a.k.a. equivariant map).
On the other hand, the reason why it is nice to have the exponent 2 in

∏
i<j |zi − zj |2 is that

points chosen according to Pνn(z1, . . . , zn) form a determinantal point process. More precisely, the
information of Pνn is contained in the orthogonal projection

L2(C, e−2(n+1)V νd`C) � Pol≤n−1(C),

where Pol≤n−1(C) denotes the space of polynomials of degree less or equal than n− 1. Since V ν

is logarithmic at infinity, Pol≤n−1(C) is exactly the set L2
Hol(C, e

−2(n+1)V νd`C) of L2 holomorphic
functions. We will denote this point process by Cνn.

On the other hand, if we start with a general positive measure µ and take a function U such
that ∆U = µ, we could consider the determinantal point process associated to the projection

L2(C, e−2Ud`C) � L2
Hol(C, e

−2Ud`C).

It can be seen that this only depends on2 µ and not on the precise U we have chosen (as long as
∆U = µ). We denote this point process by Cµ.

One of the main philosophies I wanted to convey in this article is that “if µn converges (in
some sense) to µ, then Cµn should converge to Cµ”. If Tλ,x0 denotes the map x 7→ λ(x−x0), Edge
fluctuations for random normal matrix ensembles shows the following for a family of radial cases.

If nTλn,x0ν −−−→n→∞
µ then Tλn,x0Cνn −−−→n→∞

Cµ.

1Moreover, this invariance can be nicely explained from the point of view of holomorphic Hermitian line bundles
on the sphere.

2This is because if U is harmonic on C, there exists a holomorphic function f on C such that |f |2 = e−2U .



Remark 1. Another goal of this article is to convey the idea that the dominated convergence
theorem and a few properties of holomorphic functions are the only tools necessary to deal with a
bunch of questions for radial determinantal Coulomb gases.

Remark 2. For the case ν(C) > 1, the inclusion Pol≤n−1(C) ⊂ L2
Hol(C, e

−2(n+1)V νd`C) is strict
so that convergence towards L2 � X ⊂ L2

Hol for some closed subspace X 6= L2
Hol is expected,

and proven for a family of radial determinantal Coulomb gases in Edge fluctuations for random
normal matrix ensembles that generalize the finite Ginibre point process.

Remark 3. The philosophy in red above is tied to the fact that Cµ does not depend on U as long
as ∆U = µ. Nevertheless, we could have that µn converges to infinity outside some open set A
and µn|A converges to some µ. In this case, we would have a family of possible limits (limits of
subsequences) for Cµn |A indexed by a set that depends on the homology of A. This is explored for
some cases in Universality for outliers in weakly confined Coulomb-type systems and in Extremal
particles of two-dimensional Coulomb gases and random polynomials on a positive background.

Remark 4. In Edge fluctuations for random normal matrix ensembles, fluctuations of the max-
ima are also (even primarily) discussed. The proofs follow the same ideas as below, the main
point being that, by an argument due to Kostlan, the system of distances to the origin behaves as
a system of independent variables and, in the Poisson case, we only need the limit of intensities.

Idea of the proof

Suppose that ν is radial, that ν({z ∈ C : |z| > 1}) = 0 and that, for some α > 1,

ν({z ∈ C : |z| > r}) = α(1− r)α−1 + o(1− r)α−1 as r → 1−.

Then, modulo an additive constant, V ν(z) = V (|z|) for some V : [0,∞)→ R satisfying

• V (r) = log r for every r ≥ 1,

• V (r) > log r for every r < 1 and

• V (r) = log r + (1− r)α + o(1− r)α as r → 1−.

Now it can be seen, for instance, that if x ∈ R, the intensity function of the determinantal point
process Tn1/α,1Cνn at x is (for n large enough)

1

n2/α

n−1∑
k=0

a
(n)
k

(
1 +

x

n1/α

)2k
e
−2(n+1)V

(
1+ x

n1/α

)
, where a

(n)
k =

(
2π

∫ ∞
0

r2k+1e−2(n+1)V (r)dr

)−1
.

To find the limit we write

1

n2/α

n−1∑
k=0

a
(n)
k

(
1 +

x

n1/α

)2k
e
−2(n+1)V

(
1+ x

n1/α
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=
1
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a
(n)
k

(
1 +
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)2(k−n−1)
e
−2(n+1)

(
V
(
1+ x

n1/α

)
−log

(
1+ x

n1/α

))
.



By the behavior of V (r)− log r near r = 1 we have

lim
n→∞

(n+ 1)
(
V
(

1 +
x

n1/α

)
− log

(
1 +

x

n1/α

))
= |min(x, 0)|α =: U(x).

On the other hand, the sum part can be seen as a Riemann sum and we can use the dominated
convergence theorem to finally obtain

lim
n→∞

1

n2/α

n−1∑
k=0

a
(n)
k

(
1 +

x

n1/α

)2k
e
−2(n+1)V

(
1+ x

n1/α

)
=
e−2U(x)

2π

∫ 0

−∞

e2xt∫∞
−∞ e

2ste−2U(s)ds
dt =: ρ(x).

Notice that, if we extend U as U(x+ iy) = U(x), then

∆U = α(α− 1)|min(x, 0)|α−2dxdy =: µ

which is the limit of nTn1/α,1Cνn due to the properties of ν. Moreover, ρ is the intensity of Cµ.


