## Exercise Sheet 5. A few questions

**Exercice 1.** Let  $h \in \mathbb{C}(z)$ . We write it as  $h(z) = \alpha \prod_{i=1}^k (z - a_i)^{n_i}$  with  $\alpha \in \mathbb{C}^*$ , the  $a_i \in \mathbb{C}$  pairwise distinct and  $n_i \in \mathbb{Z} \setminus \{0\}$ . Suppose that at least one of  $n_i$  is odd.

- 1. Show that  $w^2 h(z) \in \mathcal{M}(\mathbb{C}P^1)[w]$  is irreducible.
- 2. Show that the Riemann surface associated to  $w^2 h(z) \in \mathcal{M}(\mathbb{C}P^1)[w]$  is isomorphic (covering isomorphism) to the one associated to  $w^2 g(z)$  for some polynomial  $g \in \mathbb{C}[z]$  with only simple roots.
- 3. Show that a compact and connected Riemann surface that can be written as a two-sheeted covering over  $\mathbb{C}P^1$  is hyperelliptic in the sense defined in TD 3.
- 4. Consider  $\ell$  distinct points  $p_1, \ldots, p_{\ell} \in \mathbb{C}P^1$ . If  $\ell$  is even, show that there exists a unique two-sheeted branched covering (modulo isomorphisms) such that  $p_1, \ldots, p_{\ell}$  are the ramification points. If  $\ell$  is odd, show that there is no such a covering.

**Exercice 2.** Let  $P \in \mathbb{C}[z, w, t]$  be an irreducible homogeneous polynomial with  $\deg P \geq 2$  and consider the set  $X = \{[z, w, t] \in \mathbb{C}P^2 : P(z, w, t) = 0\}$ . Show that X is a Riemann surface if and only if  $\{(z, w, t) \in \mathbb{C}^3 : \partial P/\partial z(z, w, t) = \partial P/\partial w(z, w, t) = \partial P/\partial t(z, w, t) = 0\} = \{(0, 0, 0)\}$ .

In what follows, S is a compact and connected Riemann surface.

**Exercice 3.** Suppose that the genus of S is 2 and let  $\pi_1, \pi_2 : S \to \mathbb{C}P^1$  be two two-sheeted coverings. Show that there exists a biholomorphism  $F : \mathbb{C}P^1 \to \mathbb{C}P^1$  such that  $F \circ \pi_1 = \pi_2$ . Deduce that the branching points (points of S) of  $\pi_1$  and of  $\pi_2$  are the same.

**Exercice 4.** Let X be a complex manifold and  $Y \subset X$  be a closed complex submanifold of X. Show that, for every holomorphic map  $f: S \to X$ ,

$$f^{-1}(Y) = S$$
 or  $f^{-1}(Y)$  is finite.

**Exercice 5.** Let f be meromorphic on S and  $\mathcal{L}: S \to [-\infty, \infty]$  be defined by  $\mathcal{L}(z) = \log |f(z)|$ .

- 1. Show that  $\mathcal{L} \in L^1(S)$  in the sense where, for each smooth 2-form  $\rho$ , we have  $\mathcal{L} \in L^1(S, \rho)$ .
- 2. If  $\operatorname{div}(f) = \sum_{i=1}^n n_i[p_i]$ , show that  $\Delta \mathcal{L} = 2\pi \sum_{i=1}^n n_i \delta_{p_i}$  in the sense where

$$\int_{S} \mathcal{L}\Delta h = 2\pi \sum_{i=1}^{n} n_{i} h(p_{i}) \text{ for every } h \in C^{\infty}(S).$$

Let us define the notion of holomorphic fiber bundle with fiber  $\mathbb{C}P^1$ . Take a complex manifold E and a holomorphic map  $\pi: E \to S$ . We will say that  $(E, \pi)$  is a holomorphic fiber bundle of fiber  $\mathbb{C}P^1$  if for every  $p \in S$  there exists an open neighborhood U of p and a biholomorphism  $\varphi: U \times \mathbb{C}P^1 \to \pi^{-1}(U)$  satisfying  $\pi \circ \varphi = \pi_1$ , where  $\pi_1: U \times \mathbb{C}P^1$  is the projection onto the first coordinate. A section will be a holomorphic map  $f: S \to E$  such that  $\pi \circ f = \mathrm{Id}_S$ .

**Exercice 6.** Define a holomorphic fiber bundle E over S of fiber  $\mathbb{C}P^1$  endowed with a holomorphic section  $\sigma$  of E such that there is a "natural" identification between the *meromorphic* 1-forms over S and the holomorphic sections of E different from  $\sigma$ .

<sup>&</sup>lt;sup>1</sup>Notice that it is enough to verify this for one nowhere zero 2-form.