Exercise Sheet 4. Coverings, 1-forms, algebraic geometry ...

Here X and Y are two compact and connected Riemann surfaces.

Exercise 1 (Still about coverings).

- 1. Do there exist non-ramified coverings of $\mathbb{C}P^1$?
- 2. What about ramified coverings of $\mathbb{C}P^1$ with only one ramification point?
- 3. Show that every non-constant holomorphic map between two elliptic curves is non-ramified.
- 4. Show that every non-constant holomorphic function between two surfaces of the same genus $g \ge 2$ is a biholomorphism.
- 5. Show that, if there is a non-constant holomorphic function $f: X \to Y$, then the genus of X is greater or equal than the genus of Y.

Let $p: X \to Y$ be a non-zero holomorphic map. For a divisor $D = \sum n_x[x] \in \text{Div}(X)$ we denote p_*D the image divisor $p_*D = \sum n_x[p(x)]$. On the other hand, for $D = \sum n_y[y] \in \text{Div}(Y)$ and p non-constant, we denote p^*D the pullback divisor $p^*D = \sum (\text{mult}_x p) n_{p(x)}[x]$.

Exercise 2 (Riemann-Hurwitz). Let $p: X \to Y$ be holomorphic and non-constant.

- 1. For a non-zero meromorphic function $f: Y \dashrightarrow \mathbb{C}$, show that $\operatorname{div}(p^*f) = p^*\operatorname{div}(f)$.
- 2. For a 1-form ω not identically zero over Y show that $\operatorname{div}(p^*\omega) = p^*\operatorname{div}(\omega) + R_p$, where $R_p \in \operatorname{Div}(X)$ is the ramification divisor of p.
- 3. For a 1-form ω not identically zero over Y, show that $p_*(\operatorname{div}(p^*\omega)) = n_p\operatorname{div}(\omega) + p_*(R_p)$, where n_p is the degree of p.

Exercise 3. Let $f: X \to \mathbb{C}P^1$ be a non-constant holomorphic function and consider a point $z \in \mathbb{C}P^1$ which is not a ramification point. Show that, if $g: X \to \mathbb{C}P^1$ is a holomorphic function that separates the points of $f^{-1}(z)$, then $\mathcal{M}(X) = \mathbb{C}(f, q)$.

Exercise 4. Let $k \geq 1$ and $P = (z - a_1) \dots (z - a_k)$ be a monic polynomial with simple roots. We have seen that this defines a ramified covering $\pi : \sqrt{P(z)} \to \mathbb{C}P^1$ and that we have a biholomorphism between $\pi^{-1}(\mathbb{C})$ and $S := \{(z, w) \in \mathbb{C}^2 : w^2 = P(z)\}$. Let us restrict the 1-form dz defined over \mathbb{C}^2 to S and transport it to $\pi^{-1}(\mathbb{C})$ by keeping the notation dz.

- 1. Show that dz may be extended to a meromorphic 1-form over $\sqrt{P(z)}$.
- 2. Find $\operatorname{div}(dz)$.
- 3. If $k \geq 3$, find a non-zero meromorphic function $f: \sqrt{P(z)} \dashrightarrow \mathbb{C}$ whose divisor satisfies $\operatorname{div}(f) + \operatorname{div}(dz) \geq 0$. Can we find such a function if $k \leq 2$?
- 4. Find $\lfloor \frac{k-1}{2} \rfloor$ holomorphic 1-forms that are linearly independent.

¹I.e., $p_* : \text{Div}(X) \to \text{Div}(Y)$ is the morphism induced by p when we think Div(X) and Div(Y) as free abelian groups generated by X and Y.

Exercise 5. Let $U \subset X$ be a cofinite open set and denote by $\mathcal{O}(U)$ the ring of meromorphic functions over X that are holomorphic over U.

- 1. Show that, if $U \subsetneq \mathbb{C}P^1$, then $\mathcal{O}(U)$ is a unique factorization domain.
- 2. Show that $\mathcal{O}(\mathcal{E}\setminus\{p\})$ is not a unique factorization domain if \mathcal{E} is an elliptic curve and $p\in\mathcal{E}$.

Exercise 6. Let $X \subset \mathbb{C}P^2$ be a Riemann surface obtained as the zeros of some homogeneous irreducible polynomial $P \in \mathbb{C}[z, w, t]$. Show that

$$deg(X) = deg(P).$$

Exercise 7. Let $X \subset \mathbb{C}P^2$ be a Riemann surface obtained as the zeros of a homogeneous irreducible polynomial $P \in \mathbb{C}[z, w, t]$.

- 1. Let $f, g \in \mathbb{C}[z, w, t]$ be two homogeneous polynomials of the same degree such that $P \nmid g$. Show that f/g defines a meromorphic function over X.
- 2. Show that every holomorphic function over X can be constructed in this way.

In the following exercise, we can accept without proof (we will see it later in the course) the next theorem. For every $x \in X$, there exists a non-constant meromorphic function that is holomorphic outside of x.

Exercise 8. Let us consider the category S of Riemann surfaces where the morphisms are the holomorphic non-constant maps and the category \mathcal{E} of finitely generated field extensions of transcendence degree² 1 of \mathbb{C} where the morphisms are the unital ring morphisms that fix \mathbb{C} . Let us take the contravariant function $F: S \to \mathcal{E}$ given by

- $F(X) = \mathcal{M}(X)$ the field of meromorphic functions over X and
- for every $\varphi: X \to Y$ the morphism $F(\varphi): \mathcal{M}(Y) \to \mathcal{M}(X)$ is given by $f \mapsto f \circ \varphi$.

Show that F is an equivalence of categories.

²In other words, the objects of \mathcal{E} are the finite extensions K of $\mathbb{C}(t) \simeq \mathcal{M}(\mathbb{C}P^1)$, but we forget how $\mathbb{C}(t)$ is embedded in K and retain only how \mathbb{C} is embedded in K.