Exercise Sheet 3. Covering spaces and algebraic functions

Exercise 1. Let X and Y be two compact and connected Riemann surfaces and let $f: X \to Y$ be a holomorphic non-constant map.

- 1. Show that every continuous map $T: X \to X$ such that $f \circ T = f$ is holomorphic.
- 2. Denote by $S \subset Y$ the set of ramification points and $\tilde{X} = X \setminus f^{-1}(S)$. Show that every biholomorphism $\tilde{T}: \tilde{X} \to \tilde{X}$ that satisfies $f|_{\tilde{X}} \circ \tilde{T} = f|_{\tilde{X}}$ can be extended to a biholomorphism $T: X \to X$ satisfying $f \circ T = f$.
- 3. Let $T: X \to X$ be a biholomorphism that satisfies $f \circ T = f$ and fix $x \in X$. Show that if $x \in X$ is a branching point of f of order n then T(x) is a branching point of f of order n.

Exercise 2. Let $\Gamma_1, \Gamma_2 \subset \mathbb{C}$ be two subgroups isomorphic to \mathbb{Z}^2 .

- 1. Show that, for every non-constant holomorphic map $f: \mathbb{C}/\Gamma_1 \to \mathbb{C}/\Gamma_2$ satisfying f(0) = 0, there exists a unique $\alpha \in \mathbb{C}^*$ such that $\alpha\Gamma_1 \subset \Gamma_2$ and satisfying $p_2(\alpha z) = f(p_1(z))$ for every $z \in \mathbb{C}$, where $p_i: \mathbb{C} \to \mathbb{C}/\Gamma_i$ is the canonical projection.
- 2. Let $H:[0,1]\times\mathbb{C}/\Gamma_1\to\mathbb{C}/\Gamma_2$ be a continuous map such that $H(t,\cdot):\mathbb{C}/\Gamma_1\to\mathbb{C}/\Gamma_2$ is holomorphic for every $t\in[0,1]$. Show the existence of a continuous $\gamma:[0,1]\to\mathbb{C}/\Gamma_2$ satisfying $H(t,p)=H(0,p)+\gamma(t)$ for all $(t,p)\in[0,1]\times\mathbb{C}/\Gamma_1$. Conclude that the connected component of the identity in the group of automorphisms of an elliptic curve only contains translations.

Exercise 3 (Some examples).

1. Find the ramification points of the map $f: \mathbb{C}P^1 \to \mathbb{C}P^1$

$$f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

What are the biholomorphisms $T: \mathbb{C}P^1 \to \mathbb{C}P^1$ satisfying $f \circ T = f$?

- 2. Let $f: \mathbb{C}P^1 \to \mathbb{C}P^1$ be defined by a non-constant polynomial and let $T: \mathbb{C}P^1 \to \mathbb{C}P^1$ be a biholomorphism such that $f \circ T = f$.
 - Show that T is given by $T(z) = \alpha z + \beta$ for some $\alpha, \beta \in \mathbb{C}$ and α a root of unity.
 - Show that if $\alpha = 1$ then $\beta = 0$.
 - Give an example of f and T satisfying $\beta \neq 0$.
 - Give an example of f of degree 3 such that the only possible T is the identity.
- 3. Let $\Gamma_1, \Gamma_2 \subset \mathbb{C}$ be two subgroups isomorphic to \mathbb{Z}^2 satisfying $\Gamma_1 \subset \Gamma_2$. Show that the canonical map $p : \mathbb{C}/\Gamma_1 \to \mathbb{C}/\Gamma_2$ is a holomorphic non-ramified covering map and find the group $\operatorname{Aut}(\pi)$ of automorphisms T of \mathbb{C}/Γ_1 that satisfy $p \circ T = p$.

Exercise 4. Let $\mathbb{D}^* = \{z \in \mathbb{C} : 0 < |z| < 1\}.$

1. Let n > 0. Show that $g: \mathbb{D}^* \to \mathbb{D}^*$, defined by $g(z) = z^n$, is an unramified covering map.

- 2. Let X be a (connected) Riemann surface and let $f: X \to \mathbb{D}^*$ be a holomorphic (unramified) covering map of finite degree. Show that there exists a biholomorphism $\varphi: X \to \mathbb{D}^*$ and an integer n > 0 such that, for every $x \in X$, $f(x) = \varphi(x)^n$.
- 3. Let X be a not necessarily connected Riemann surface and let $f: X \to \mathbb{D}^*$ be a holomorphic (unramified) covering map of finite degree. Show that there exists an integer k > 0, integers $n_1, \ldots, n_k > 0$ and a biholomorphism $\varphi: X \to \mathbb{D}_1^* \sqcup \cdots \sqcup \mathbb{D}_k^*$ such that, for every $x \in \varphi^{-1}(\mathbb{D}_i^*)$, $f(x) = \varphi(x)^{n_i}$. Here the \mathbb{D}_i^* are disjoint copies of \mathbb{D}^* and $z \mapsto z^{n_i}$ goes from \mathbb{D}_i^* to \mathbb{D}^* .

Hyperelliptic curves over \mathbb{C}

Let us fix a monic polynomial $P \in \mathbb{C}[z]$ of pairwise distinct roots, $P(z) = (z - a_1) \dots (z - a_k)$ with $k \ge 1$. Consider the set

$$S = \{(z, w) \in \mathbb{C}^2 : w^2 = P(z)\}.$$

We have already seen in the exercise sheet of TD1 that the closure of S in $\mathbb{C}P^2$ is not a Riemann surface if $k \geq 4$. Let us build a "better" compactification of S. Think of P as a meromorphic function on $\mathbb{C}P^1 = \mathbb{C} \cup \{\infty\}$ and take the Riemann surface associated to $w^2 - P \in \mathcal{M}(\mathbb{C}P^1)[w]$ that we will call $\sqrt{P(z)}$ and that comes equipped with a projection $p: \sqrt{P(z)} \to \mathbb{C}P^1$.

Exercise 5. Construct a holomorphic map $\Phi: S \to \sqrt{P(z)}$ such that $p(\Phi(z, w)) = z$ for every $z \in \mathbb{C}$ and show that it is a biholomorphism over its image.

Take $\bar{S} = \text{closure of } S \text{ in } \mathbb{C}P^2$.

Exercise 6. Show that the map $\Phi^{-1}:\Phi(S)\to\mathbb{C}P^2$ can be extended to a holomorphic map $\Phi^{-1}:\sqrt{P(z)}\to\mathbb{C}P^2$ whose image is \bar{S} .

Exercise 7. Find the genus of $\sqrt{P(z)}$.

A Riemann surface obtained as $\sqrt{P(z)}$ is called a hyperelliptic curve.

Puiseux's theorem

The goal of the following exercise is to describe the algebraic closure of the field $\mathbb{C}\{\{z\}\}$ of germs of meromorphic functions at 0. More precisely, $\mathbb{C}\{\{z\}\}$ is formed by the formal Laurent series with a positive convergence radius. For each $m \geq 1$, take $\mathbb{C}\{\{z^{1/m}\}\}$ a copy of $\mathbb{C}\{\{z\}\}$, where the new variable is called $z^{1/m}$. For m, n satisfying m|n we have the canonical inclusion $i_{n,m}: \mathbb{C}\{\{z^{1/m}\}\} \to \mathbb{C}\{\{z^{1/n}\}\}$ given by

$$i_{n,m}\left(\sum_{\ell=k}^{\infty} a_{\ell}(z^{1/m})^{\ell}\right) = \sum_{\ell=k}^{\infty} a_{\ell}(z^{1/n})^{\ell n/m}.$$

This gives us an inductive system $((\mathbb{C}\{\{z^{1/m}\}\})_{m\geq 1}, (i_{n,m})_{m|n})$ and we may consider its colimit (direct limit) Pui(z). We will prove that

 $\operatorname{Pui}(z)$ is the algebraic closure of $\mathbb{C}\{\{z\}\}$.

Exercise 8. Let $F(z,w) = w^n + a_1(z)w^{n-1} + \cdots + a_n(z) \in \mathbb{C}\{\{z\}\}[w]$ be an irreducible polynomial. Show that there exists an element $\varphi \in \mathbb{C}\{\{\zeta\}\}$ that satisfies

$$F(\zeta^n, \varphi(\zeta)) = 0 \in \mathbb{C}\{\{\zeta\}\}.$$